Ejemplo n.º 1
0
 public virtual void preIterate(PCFuzzySystem Classify, ILearnAlgorithmConf conf)
 {
     result = Classify;
     Init(conf);
     HeadLeader       = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
     VelocityVector   = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
     VelocityVectorLL = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
     VelocityVectorHL = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
     for (int i = 0; i < VelocityVector.TermsSet.Count; i++)
     {
         for (int j = 0; j < VelocityVector.TermsSet[i].Parametrs.Length; j++)
         {
             VelocityVector.TermsSet[i].Parametrs[j]   = 0;
             VelocityVectorLL.TermsSet[i].Parametrs[j] = 0;
             VelocityVectorHL.TermsSet[i].Parametrs[j] = 0;
         }
     }
     SetPopulation();
     ParticlesBest = new Dictionary <KnowlegeBasePCRules, KnowlegeBasePCRules>();
     foreach (var Particle in Population)
     {
         ParticlesBest.Add(Particle, Universal);
     }
     LocalLeaders      = new KnowlegeBasePCRules[numberOfLocalLeaders];
     ExplorerParticles = new KnowlegeBasePCRules[numberOfAllParts - numberOfAimlessParts - numberOfLocalLeaders - 1];
     AimlessParticles  = new KnowlegeBasePCRules[numberOfAimlessParts];
     iter       = 0;
     Population = ListPittsburgClassifierTool.SortRules(Population, result);
 }
Ejemplo n.º 2
0
        public override PCFuzzySystem TuneUpFuzzySystem(PCFuzzySystem Classify, ILearnAlgorithmConf conf)
        {
            preIterate(Classify, conf);
            //Оптимизируем параметры
            iter = 1;
            while (iter <= MaxIter)
            {
                if (iter % changeParts == 0)
                {
                    swapParticles();
                }
                oneIterate();
            }
            //Выводим точность классификации для лучшей частицы из каждой популяции
            for (int j = 0; j < Populations.Count; j++)
            {
                Populations[j] = ListPittsburgClassifierTool.SortRules(Populations[j], result);
                Console.WriteLine("Популяция №" + j + ":");
                Console.WriteLine("Обуч: " + Math.Round(result.ClassifyLearnSamples(Populations[j][0]), 2));
                Console.WriteLine("Тест: " + Math.Round(result.ClassifyTestSamples(Populations[j][0]), 2));
            }
            //Находим самое лучшее решение из всех популяций
            List <KnowlegeBasePCRules> BestPopulation = new List <KnowlegeBasePCRules>();

            for (int i = 0; i < numberOfPopulations; i++)
            {
                BestPopulation.Add(Populations[i][0]);
            }
            BestPopulation             = ListPittsburgClassifierTool.SortRules(BestPopulation, result);
            result.RulesDatabaseSet[0] = BestPopulation[0];
            //Возвращаем результат
            return(result);
        }
Ejemplo n.º 3
0
 public override PCFuzzySystem TuneUpFuzzySystem(PCFuzzySystem Classifier, ILearnAlgorithmConf conf)
 {
     result = Classifier;
     groups = new List <int[]>();
     Init(conf);
     SetPopulation();
     Population = SortRules(Population);
     NS         = new int[m];
     for (int i = 0; i < m; i++)
     {
         NS[i] = (N - 1) / m;
     }
     cur_iter = 0;
     while (cur_iter < iter)
     {
         groups = GroupStream();
         if (p_one > rand.NextDouble())
         {
             ChooseOneCluster();
         }
         else
         {
             ChooseTwoClusters();
         }
         Population = ListPittsburgClassifierTool.SortRules(Population, result);
         Console.WriteLine(cur_iter + " - Итерация");
         Console.WriteLine("Обуч. выборка = " + result.ErrorLearnSamples(Population[0]));
         Console.WriteLine("Тест. выборка = " + result.ErrorTestSamples(Population[0]));
         cur_iter++;
     }
     Population = ListPittsburgClassifierTool.SortRules(Population, result);
     result.RulesDatabaseSet[0] = Population[0];
     return(result);
 }
Ejemplo n.º 4
0
 public virtual void oneIterate()
 {
     for (int p_i = 0; p_i < Populations.Count; p_i++)
     {
         Populations[p_i] = ListPittsburgClassifierTool.SortRules(Populations[p_i], result);
         SetRoles(Populations[p_i]);
         ChangeExplorersPositions();
         ChangeAimlessPositions();
         Populations[p_i] = DiscardRoles(Populations[p_i]);
     }
     iter++;
 }
Ejemplo n.º 5
0
 public virtual void oneIterate()
 {
     Task[] AlgTasks = new Task[numberOfPopulations];
     Parallel.For(0, Populations.Count, i =>
     {
         int p_i          = i;
         Populations[p_i] = ListPittsburgClassifierTool.SortRules(Populations[p_i], result);
         SetRoles(Populations[p_i], p_i);
         ChangeExplorersPositions(p_i);
         ChangeAimlessPositions(p_i);
         Populations[p_i] = DiscardRoles(Populations[p_i], p_i);
     });
     iter++;
 }
Ejemplo n.º 6
0
 public virtual void oneIterate()
 {
     SetRoles();
     ChangeExplorersPositions();
     ChangeAimlessPositions();
     DiscardRoles();
     Population = ListPittsburgClassifierTool.SortRules(Population, result);
     iter++;
     if (iter == MaxIter)
     {
         Console.WriteLine("Обуч: " + Math.Round(result.ClassifyLearnSamples(Population[0]), 2));
         Console.WriteLine("Тест: " + Math.Round(result.ClassifyTestSamples(Population[0]), 2));
         //Console.WriteLine();
     }
 }
Ejemplo n.º 7
0
        //основные вычисления
        public override PCFuzzySystem TuneUpFuzzySystem(PCFuzzySystem Classify, ILearnAlgorithmConf conf)
        {
            rand   = new Random();
            result = Classify;
            Init(conf);
            SetPopulation();
            KnowlegeBasePCRules BEST = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
            double bestError         = result.ErrorLearnSamples(BEST);

            //отчистка консоли

#if debug
            Console.Clear();
#endif
            //запуск итераций
            for (int it = 0; it < iter; it++)
            {
#if debug
                //вывод номера итерации
                Console.Write("Итерация __№__ = ");
                Console.WriteLine(it);
#endif
                //расчитыавем значение фитнес-функции
                Population = ListPittsburgClassifierTool.SortRules(Population, result);
                double[] K = new double[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    K[i] = result.ErrorLearnSamples(Population[i]);
#if debug
                    Console.Write("Значние  K[i1] = ");
                    Console.WriteLine(K[i]);
#endif
                    if (double.IsNaN(K[i]) || double.IsInfinity(K[i]))
                    {
                        result.UnlaidProtectionFix(Population[i]);
                        K[i] = result.ErrorLearnSamples(Population[i]);

#if debug
                        Console.Write("Значние  K[i2] = ");
                        Console.WriteLine(K[i]);
#endif
                    }
                }
                Kworst = K.Max();
                if (double.IsNaN(Kworst) || double.IsInfinity(Kworst))
                {
                    int iworst = K.ToList().IndexOf(Kworst);
 #if debug
                    Console.Write("Значние iworst = ");
                    Console.WriteLine(iworst);
#endif
                }

#if debug
                //вывод Kworst
                Console.Write("Значние KWorst = ");
                Console.WriteLine(Kworst);
#endif
                Kbest = K.Min();
#if debug
                //вывод Kbest
                Console.Write("Значние Kbest = ");
                Console.WriteLine(Kbest);
#endif
                int ibest = K.ToList().IndexOf(Kbest);
#if debug
                //вывод ibest
                Console.Write("Значние ibest = ");
                Console.WriteLine(ibest);
#endif
                //перебрать значения фитнес функции
                //расчитыавем значение D
                double dit;
                dit = it;
                double diter;
                diter = iter;

                double D = (dmax * (rand.NextDouble() * 2 - 1) * (dit / diter));

                //расчитываем значение rand1 для D
                double rand1;
                rand1 = D / (dmax * (it) / iter);
#if debug
                //выводим значение rand1 для D
                Console.Write("Значение Drand = ");
                Console.WriteLine(rand1);

                //выводим значение D
                Console.Write("Значение __D__ = ");
                Console.WriteLine(D);
#endif
                //расчитыавем значение Xfood
                double divide = K.Select(x => 1 / x).ToList().Sum();
                var    Xfood  = new KnowlegeBasePCRules(Population[0]);
                for (int t = 0; t < Xfood.TermsSet.Count; t++)
                {
                    for (int p = 0; p < Xfood.TermsSet[t].CountParams; p++)
                    {
                        Xfood.TermsSet[t].Parametrs[p] = 0;

                        for (int i = 0; i < Population.Length; i++)
                        {
                            Xfood.TermsSet[t].Parametrs[p] += Population[i].TermsSet[t].Parametrs[p] / K[i];
#if debug
                            //выводим значение Xfood
                            Console.Write("Значение Xfood = ");
                            Console.WriteLine(Xfood.TermsSet[t].Parametrs[p]);
#endif
                        }
                        Xfood.TermsSet[t].Parametrs[p] /= divide;
                    }
                }
#if debug
                //вывод divide
                Console.Write("Значние divide = ");
                Console.WriteLine(divide);
#endif
                //расчитываем значение Kfood
                double Kfood = result.ErrorLearnSamples(Xfood);
                if (double.IsNaN(Kfood) || double.IsInfinity(Kfood))
                {
                    result.UnlaidProtectionFix(Xfood);
                    Kfood = result.ErrorLearnSamples(Xfood);
                }
#if debug
                //выводим значение Kfood
                Console.Write("Значение Kfood = ");
                Console.WriteLine(Kfood);
#endif
                //расчитываем значение Cfood
                double Cfood = 2 * (1 - (dit / diter));
#if debug
                //выводим значение Cfood
                Console.Write("Значение Cfood = ");
                Console.WriteLine(Cfood);
#endif
                //расчитываем значение Bfood
                KnowlegeBasePCRules[] Bfood = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    Bfood[i] = new KnowlegeBasePCRules(Population[i]);
                    double KRoofifood = CalcKroof(K[i], Kfood);
                    KnowlegeBasePCRules Xroofifood = new KnowlegeBasePCRules(CalcXroof(Population[i], Xfood));
                    for (int t = 0; t < Bfood[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bfood[i].TermsSet[t].CountParams; p++)
                        {
                            Bfood[i].TermsSet[t].Parametrs[p] = Cfood * KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Bfood
                            Console.Write("Значение Bfood = ");
                            Console.WriteLine(Bfood[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение Bbest
                KnowlegeBasePCRules[] Bbest = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    Bbest[i] = new KnowlegeBasePCRules(Population[i]);
                    double KRoofifood = CalcKroof(K[i], K[ibest]);
                    KnowlegeBasePCRules Xroofifood = new KnowlegeBasePCRules(CalcXroof(Population[i], Population[ibest]));
                    for (int t = 0; t < Bbest[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bbest[i].TermsSet[t].CountParams; p++)
                        {
                            Bbest[i].TermsSet[t].Parametrs[p] = KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Bbest
                            Console.Write("Значение Bbest = ");
                            Console.WriteLine(Bbest[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение B
                KnowlegeBasePCRules[] B = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    B[i] = new KnowlegeBasePCRules(Population[i]);
                    for (int t = 0; t < B[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < B[i].TermsSet[t].CountParams; p++)
                        {
                            B[i].TermsSet[t].Parametrs[p] = Bfood[i].TermsSet[t].Parametrs[p] + Bbest[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение B
                            Console.Write("Значение __B__ = ");
                            Console.WriteLine(B[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение F
                KnowlegeBasePCRules[] F = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    if (i == 0)
                    {
                        F[i] = new KnowlegeBasePCRules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение F
                                Console.Write("Значение __F__ = ");
                                Console.WriteLine(F[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                    else
                    {
                        F[i] = new KnowlegeBasePCRules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p] + wf * F[i - 1].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение F
                                Console.Write("Значение __F__ = ");
                                Console.WriteLine(F[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }
                List <int> [] neihbors = new List <int> [Population.Length];
                //расчитываем значение alocal
                KnowlegeBasePCRules[] alocal = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    alocal[i]   = new KnowlegeBasePCRules(Population[i]);
                    neihbors[i] = countneihbors(Population[i]);

/*
 #if debug
 *                  //вывод значений количества соседей
 *                  for (int g = 0; g < Population.Length; g++)
 *                  {
 *                      Console.Write("Знаение countneihbors = ");
 *                      Console.WriteLine(countneihbors(Population[g]));
 *                  }
 #endif
 */

                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < alocal[i].TermsSet[t].CountParams; p++)
                        {
                            alocal[i].TermsSet[t].Parametrs[p] = 0;
                            for (int j = 0; j < neihbors[i].Count; j++)
                            {
                                double KRoofij = CalcKroof(K[i], K[neihbors[i][j]]);
                                KnowlegeBasePCRules XRoofij = new KnowlegeBasePCRules(CalcXroof(Population[i], Population[neihbors[i][j]]));

                                alocal[i].TermsSet[t].Parametrs[p] += KRoofij * XRoofij.TermsSet[t].Parametrs[p];

#if debug
                                //выводим значение alocal
                                Console.Write("Знаение alocal = ");
                                Console.WriteLine(alocal[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }

                //расчитываем значение Cbest
                double Cbest = 2 * (rand.NextDouble() - (dit / diter));
#if debug
                //выводим значение Cbest
                Console.Write("Значение Сbest = ");
                Console.WriteLine(Cbest);
#endif
                //расчитываем значение rand для Cbest
                double rand2;
                rand2 = it / iter - Cbest / 2;
#if debug
                //выводим значение rand2 для Cbest
                Console.Write("Значение Crand = ");
                Console.WriteLine(rand2);
#endif
                //расчитываем значение atarget
                KnowlegeBasePCRules[] atarget = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    atarget[i] = new KnowlegeBasePCRules(Population[i]);
                    double KRoofibest = CalcKroof(K[i], K[ibest]);
                    KnowlegeBasePCRules XRoofibest = new KnowlegeBasePCRules(CalcXroof(Population[i], Population[ibest]));
                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < atarget[i].TermsSet[t].CountParams; p++)
                        {
                            atarget[i].TermsSet[t].Parametrs[p] = Cbest * KRoofibest * XRoofibest.TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение atarget
                            Console.Write("Знание atarget = ");
                            Console.WriteLine(atarget[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение a
                KnowlegeBasePCRules[] a = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    a[i] = new KnowlegeBasePCRules(Population[i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            a[i].TermsSet[t].Parametrs[p] = atarget[i].TermsSet[t].Parametrs[p] + alocal[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение a
                            Console.Write("Значение __a__ = ");
                            Console.WriteLine(a[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }

                //расчитываем значение N
                KnowlegeBasePCRules[] N = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    if (i == 0)
                    {
                        N[i] = new KnowlegeBasePCRules(Population[i]);
                        for (int t = 0; t < N[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = Vf * a[i].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение N
                                Console.Write("Значение __N__ = ");
                                Console.WriteLine(N[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                    else
                    {
                        N[i] = new KnowlegeBasePCRules(Population[i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < N[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = nmax * a[i].TermsSet[t].Parametrs[p] + wn * N[i - 1].TermsSet[t].Parametrs[p];
#if debug
                                //выводим значение N
                                Console.Write("Значение __N__ = ");
                                Console.WriteLine(N[i].TermsSet[t].Parametrs[p]);
#endif
                            }
                        }
                    }
                }

                //расчитываем значение dX
                KnowlegeBasePCRules[] dX = new KnowlegeBasePCRules[Population.Length];
                for (int i = 0; i < Population.Length; i++)
                {
                    dX[i] = new KnowlegeBasePCRules(Population[i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            dX[i].TermsSet[t].Parametrs[p] = F[i].TermsSet[t].Parametrs[p] + N[i].TermsSet[t].Parametrs[p] + D;
#if debug
                            //выводим значение dX
                            Console.Write("Значение _dX__ = ");
                            Console.WriteLine(dX[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }



                //выводим значение BEST
                //   Console.Write("Значение BEST_ = ");
                //  Console.WriteLine(BEST);


                //расчитываем значение X(t+dt)
                for (int i = 0; i < Population.Length; i++)
                {
                    Population[i] = new KnowlegeBasePCRules(Population[i]);
                    for (int t = 0; t < Population[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                        {
                            Population[i].TermsSet[t].Parametrs[p] = Population[i].TermsSet[t].Parametrs[p] + calcdeltat(ct) * dX[i].TermsSet[t].Parametrs[p];
#if debug
                            //выводим значение Xnew
                            Console.Write("Знание X(t+dt) = ");
                            Console.WriteLine(Population[i].TermsSet[t].Parametrs[p]);
#endif
                        }
                    }
                }



                for (int i = 0; i < Population.Length; i++)
                {
                    double temp = result.ErrorLearnSamples(Population[i]);
                    if (double.IsNaN(temp) || double.IsInfinity(temp))
                    {
                        result.UnlaidProtectionFix(Xfood);
                        temp = result.ErrorLearnSamples(Population[i]);
                    }

                    if (temp < bestError)
                    {
                        BEST      = new KnowlegeBasePCRules(Population[i]);
                        bestError = temp;
                    }
                }


                double y = it;
                if (y % 10 == 0 & y != 0)
                {
                    Console.WriteLine(it);
                    Console.WriteLine(bestError);
                }
#if debug
                // выводим значение лучшей ошибки Kbest
                Console.Write("Значние BestError = ");
                Console.WriteLine(bestError);

                Console.WriteLine(".");
#endif
            }
            result.RulesDatabaseSet[0] = BEST;
            return(result);
        }
Ejemplo n.º 8
0
        public override PCFuzzySystem TuneUpFuzzySystem(PCFuzzySystem Classifier, ILearnAlgorithmConf conf)
        {
            result = Classifier;
            //Узнаем название папки с данными
            string path_name   = "../../OLD/Data/Keel/Classifier/KEEL-10/";
            string folder_name = "";

            foreach (var letter in result.LearnSamplesSet.FileName)
            {
                if (letter != '-')
                {
                    folder_name += letter;
                }
                else
                {
                    break;
                }
            }
            groups = new List <int[]>();
            Init(conf);
            //Создаем новые обучающую и тестовую выбоки и удаляем из них некоторое количество случайных элементов
            List <PCFuzzySystem> results = new List <PCFuzzySystem>();

            for (int i = 0; i < numberOfPopulations; i++)
            {
                SampleSet new_learn = new SampleSet(path_name + folder_name + "/" + result.LearnSamplesSet.FileName);
                SampleSet new_test  = new SampleSet(path_name + folder_name + "/" + result.TestSamplesSet.FileName);
                results.Add(new PCFuzzySystem(new_learn, new_test));
                int ground = (int)Math.Round(results[i].LearnSamplesSet.DataRows.Count * 0.25);
                for (int j = 0; j < ground; j++)
                {
                    results[i].LearnSamplesSet.DataRows.RemoveAt(rand.Next(0, results[i].LearnSamplesSet.DataRows.Count));
                }
            }
            Populations = new List <List <KnowlegeBasePCRules> >();
            for (int i = 0; i < numberOfPopulations; i++)
            {
                Populations.Add(SetPopulation(new List <KnowlegeBasePCRules>()));
                Populations[i] = ListPittsburgClassifierTool.SortRules(Populations[i], result);
            }
            NS = new int[m];
            for (int i = 0; i < m; i++)
            {
                NS[i] = (N - 1) / m;
            }
            cur_iter = 0;
            while (cur_iter < iter)
            {
                for (int p_i = 0; p_i < Populations.Count; p_i++)
                {
                    groups = GroupStream(Populations[p_i]);
                    if (p_one > rand.NextDouble())
                    {
                        ChooseOneCluster(Populations[p_i]);
                    }
                    else
                    {
                        ChooseTwoClusters(Populations[p_i]);
                    }
                    Populations[p_i] = ListPittsburgClassifierTool.SortRules(Populations[p_i], results[p_i]);
                    //Console.WriteLine(cur_iter + " - Итерация");
                    //Console.WriteLine("Обуч. выборка = " + result.ErrorLearnSamples(Populations[p_i][0]));
                    //Console.WriteLine("Тест. выборка = " + result.ErrorTestSamples(Populations[p_i][0]));
                }
                cur_iter++;
            }
            //Выводим точность классификации для лучшей частицы из каждой популяции
            for (int j = 0; j < Populations.Count; j++)
            {
                Populations[j] = ListPittsburgClassifierTool.SortRules(Populations[j], results[j]);
                Console.WriteLine("Популяция №" + j + ":");
                Console.WriteLine("Обуч: " + Math.Round(result.ClassifyLearnSamples(Populations[j][0]), 2));
                Console.WriteLine("Тест: " + Math.Round(result.ClassifyTestSamples(Populations[j][0]), 2));
            }
            //Допобавляем в базу правил лучшие решения
            if (result.RulesDatabaseSet.Count == 1)
            {
                result.RulesDatabaseSet.Clear();
            }
            for (int i = 0; i < Populations.Count; i++)
            {
                result.RulesDatabaseSet.Add(Populations[i][0]);
            }
            //Возвращаем результат
            return(result);
        }
Ejemplo n.º 9
0
        public override PCFuzzySystem TuneUpFuzzySystem(PCFuzzySystem Classify, ILearnAlgorithmConf conf)
        {
            result = Classify;
            //Узнаем название папки с данными
            string path_name   = "../../OLD/Data/Keel/Classifier/KEEL-10/";
            string folder_name = "";

            foreach (var letter in result.LearnSamplesSet.FileName)
            {
                if (letter != '-')
                {
                    folder_name += letter;
                }
                else
                {
                    break;
                }
            }
            //Инициализируем параметры
            Init(conf);
            //Создаем новые обучающую и тестовую выбоки и удаляем из них некоторое количество случайных элементов
            List <PCFuzzySystem> results = new List <PCFuzzySystem>();

            for (int i = 0; i < numberOfPopulations; i++)
            {
                SampleSet new_learn = new SampleSet(path_name + folder_name + "/" + result.LearnSamplesSet.FileName);
                SampleSet new_test  = new SampleSet(path_name + folder_name + "/" + result.TestSamplesSet.FileName);
                results.Add(new PCFuzzySystem(new_learn, new_test));
                int ground = (int)Math.Round(results[i].LearnSamplesSet.DataRows.Count * 0.25);
                for (int j = 0; j < ground; j++)
                {
                    results[i].LearnSamplesSet.DataRows.RemoveAt(rand.Next(0, results[i].LearnSamplesSet.DataRows.Count));
                }
            }
            //Инициализируем и зануляем вектора алгоритма
            HeadLeader       = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
            VelocityVector   = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
            VelocityVectorLL = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
            VelocityVectorHL = new KnowlegeBasePCRules(result.RulesDatabaseSet[0]);
            for (int i = 0; i < VelocityVector.TermsSet.Count; i++)
            {
                for (int j = 0; j < VelocityVector.TermsSet[i].Parametrs.Length; j++)
                {
                    VelocityVector.TermsSet[i].Parametrs[j]   = 0;
                    VelocityVectorLL.TermsSet[i].Parametrs[j] = 0;
                    VelocityVectorHL.TermsSet[i].Parametrs[j] = 0;
                }
            }
            //Создаем популяции и архив лучших положений каждой частицы
            Populations = new List <List <KnowlegeBasePCRules> >();
            for (int i = 0; i < numberOfPopulations; i++)
            {
                Populations.Add(SetPopulation(new List <KnowlegeBasePCRules>()));
            }
            ParticlesBest = new Dictionary <KnowlegeBasePCRules, KnowlegeBasePCRules>();
            foreach (var Population in Populations)
            {
                foreach (var Particle in Population)
                {
                    ParticlesBest.Add(Particle, Universal);
                }
            }
            //Инициализируем роли частиц
            LocalLeaders      = new KnowlegeBasePCRules[numberOfLocalLeaders];
            ExplorerParticles = new KnowlegeBasePCRules[numberOfAllParts - numberOfAimlessParts - numberOfLocalLeaders - 1];
            AimlessParticles  = new KnowlegeBasePCRules[numberOfAimlessParts];
            //Оптимизируем параметры
            iter = 1;
            while (iter < MaxIter)
            {
                for (int p_i = 0; p_i < Populations.Count; p_i++)
                {
                    Populations[p_i] = ListPittsburgClassifierTool.SortRules(Populations[p_i], results[p_i]);
                    SetRoles(Populations[p_i]);
                    ChangeExplorersPositions();
                    ChangeAimlessPositions();
                    Populations[p_i] = DiscardRoles(Populations[p_i]);
                }
                iter++;
            }
            //Выводим точность классификации для лучшей частицы из каждой популяции
            for (int j = 0; j < Populations.Count; j++)
            {
                Populations[j] = ListPittsburgClassifierTool.SortRules(Populations[j], results[j]);
                Console.WriteLine("Популяция №" + j + ":");
                Console.WriteLine("Обуч: " + Math.Round(result.ClassifyLearnSamples(Populations[j][0]), 2));
                Console.WriteLine("Тест: " + Math.Round(result.ClassifyTestSamples(Populations[j][0]), 2));
            }
            //Допобавляем в базу правил лучшие решения
            if (result.RulesDatabaseSet.Count == 1)
            {
                result.RulesDatabaseSet.Clear();
            }
            for (int i = 0; i < Populations.Count; i++)
            {
                result.RulesDatabaseSet.Add(Populations[i][0]);
            }
            //Возвращаем результат
            return(result);
        }
Ejemplo n.º 10
0
        public void oneIterate()
        {
            for (int p_i = 0; p_i < Populations.Count; p_i++)
            {
                //расчитыавем значение фитнес-функции
                Populations[p_i] = ListPittsburgClassifierTool.SortRules(Populations[p_i], results[p_i]);
                double[] K = new double[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    K[i] = results[p_i].ErrorLearnSamples(Populations[p_i][i]);
                    if (double.IsNaN(K[i]) || double.IsInfinity(K[i]) || K[i] == 100)
                    {
                        results[p_i].UnlaidProtectionFix(Populations[p_i][i]);
                        K[i] = results[p_i].ErrorLearnSamples(Populations[p_i][i]);
                    }
                }
                Kworst = K.Max();
                if (double.IsNaN(Kworst) || double.IsInfinity(Kworst))
                {
                    int iworst = K.ToList().IndexOf(Kworst);
                }
                Kbest = K.Min();
                int ibest = K.ToList().IndexOf(Kbest);
                //перебрать значения фитнес функции
                //расчитыавем значение D
                double dit;
                dit = it;
                double diter;
                diter = iter;

                double D = (dmax * (rand.NextDouble() * 2 - 1) * (dit / diter));

                //расчитываем значение rand1 для D
                double rand1;
                rand1 = D / (dmax * (it) / iter);
                //расчитыавем значение Xfood
                double divide = K.Select(x => 1 / x).ToList().Sum();
                var    Xfood  = new KnowlegeBasePCRules(Populations[p_i][0]);
                for (int t = 0; t < Xfood.TermsSet.Count; t++)
                {
                    for (int p = 0; p < Xfood.TermsSet[t].CountParams; p++)
                    {
                        Xfood.TermsSet[t].Parametrs[p] = 0;

                        for (int i = 0; i < Populations[p_i].Count; i++)
                        {
                            Xfood.TermsSet[t].Parametrs[p] += Populations[p_i][i].TermsSet[t].Parametrs[p] / K[i];
                        }
                        Xfood.TermsSet[t].Parametrs[p] /= divide;
                    }
                }
                //расчитываем значение Kfood
                double Kfood = results[p_i].ErrorLearnSamples(Xfood);
                if (double.IsNaN(Kfood) || double.IsInfinity(Kfood) || Kfood == 100)
                {
                    results[p_i].UnlaidProtectionFix(Xfood);
                    Kfood = results[p_i].ErrorLearnSamples(Xfood);
                }
                //расчитываем значение Cfood
                double Cfood = 2 * (1 - (dit / diter));
                //расчитываем значение Bfood
                KnowlegeBasePCRules[] Bfood = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    Bfood[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    double KRoofifood = CalcKroof(K[i], Kfood);
                    KnowlegeBasePCRules Xroofifood = new KnowlegeBasePCRules(CalcXroof(Populations[p_i][i], Xfood));
                    for (int t = 0; t < Bfood[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bfood[i].TermsSet[t].CountParams; p++)
                        {
                            Bfood[i].TermsSet[t].Parametrs[p] = Cfood * KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
                        }
                    }
                }

                //расчитываем значение Bbest
                KnowlegeBasePCRules[] Bbest = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    Bbest[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    double KRoofifood;
                    if (i != ibest)
                    {
                        KRoofifood = CalcKroof(K[i], K[ibest]);
                    }
                    else
                    {
                        KRoofifood = 1.0;
                    }
                    KnowlegeBasePCRules Xroofifood = new KnowlegeBasePCRules(CalcXroof(Populations[p_i][i], Populations[p_i][ibest]));
                    for (int t = 0; t < Bbest[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < Bbest[i].TermsSet[t].CountParams; p++)
                        {
                            Bbest[i].TermsSet[t].Parametrs[p] = KRoofifood * Xroofifood.TermsSet[t].Parametrs[p];
                        }
                    }
                }

                //расчитываем значение B
                KnowlegeBasePCRules[] B = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    B[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    for (int t = 0; t < B[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < B[i].TermsSet[t].CountParams; p++)
                        {
                            B[i].TermsSet[t].Parametrs[p] = Bfood[i].TermsSet[t].Parametrs[p] + Bbest[i].TermsSet[t].Parametrs[p];
                        }
                    }
                }

                //расчитываем значение F
                KnowlegeBasePCRules[] F = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    if (i == 0)
                    {
                        F[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p];
                            }
                        }
                    }
                    else
                    {
                        F[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                F[i].TermsSet[t].Parametrs[p] = Vf * B[i].TermsSet[t].Parametrs[p] + wf * F[i - 1].TermsSet[t].Parametrs[p];
                            }
                        }
                    }
                }
                List <int>[] neihbors = new List <int> [Populations[p_i].Count];
                //расчитываем значение alocal
                KnowlegeBasePCRules[] alocal = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    alocal[i]   = new KnowlegeBasePCRules(Populations[p_i][i]);
                    neihbors[i] = countneihbors(Populations[p_i][i], Populations[p_i]);
                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < alocal[i].TermsSet[t].CountParams; p++)
                        {
                            alocal[i].TermsSet[t].Parametrs[p] = 0;
                            for (int j = 0; j < neihbors[i].Count; j++)
                            {
                                double KRoofij = CalcKroof(K[i], K[neihbors[i][j]]);
                                KnowlegeBasePCRules XRoofij = new KnowlegeBasePCRules(CalcXroof(Populations[p_i][i], Populations[p_i][neihbors[i][j]]));

                                alocal[i].TermsSet[t].Parametrs[p] += KRoofij * XRoofij.TermsSet[t].Parametrs[p];
                            }
                        }
                    }
                }

                //расчитываем значение Cbest
                double Cbest = 2 * (rand.NextDouble() - (dit / diter));
                //расчитываем значение rand для Cbest
                double rand2;
                rand2 = it / iter - Cbest / 2;
                //расчитываем значение atarget
                KnowlegeBasePCRules[] atarget = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    atarget[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    double KRoofibest = CalcKroof(K[i], K[ibest]);
                    KnowlegeBasePCRules XRoofibest = new KnowlegeBasePCRules(CalcXroof(Populations[p_i][i], Populations[p_i][ibest]));
                    for (int t = 0; t < alocal[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < atarget[i].TermsSet[t].CountParams; p++)
                        {
                            atarget[i].TermsSet[t].Parametrs[p] = Cbest * KRoofibest * XRoofibest.TermsSet[t].Parametrs[p];
                        }
                    }
                }

                //расчитываем значение a
                KnowlegeBasePCRules[] a = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    a[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            a[i].TermsSet[t].Parametrs[p] = atarget[i].TermsSet[t].Parametrs[p] + alocal[i].TermsSet[t].Parametrs[p];
                        }
                    }
                }

                //расчитываем значение N
                KnowlegeBasePCRules[] N = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    if (i == 0)
                    {
                        N[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                        for (int t = 0; t < N[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = Vf * a[i].TermsSet[t].Parametrs[p];
                            }
                        }
                    }
                    else
                    {
                        N[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                        for (int t = 0; t < F[i].TermsSet.Count; t++)
                        {
                            for (int p = 0; p < N[i].TermsSet[t].CountParams; p++)
                            {
                                N[i].TermsSet[t].Parametrs[p] = nmax * a[i].TermsSet[t].Parametrs[p] + wn * N[i - 1].TermsSet[t].Parametrs[p];
                            }
                        }
                    }
                }

                //расчитываем значение dX
                KnowlegeBasePCRules[] dX = new KnowlegeBasePCRules[Populations[p_i].Count];
                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    dX[i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    for (int t = 0; t < a[i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < a[i].TermsSet[t].CountParams; p++)
                        {
                            dX[i].TermsSet[t].Parametrs[p] = F[i].TermsSet[t].Parametrs[p] + N[i].TermsSet[t].Parametrs[p] + D;
                        }
                    }
                }

                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    Populations[p_i][i] = new KnowlegeBasePCRules(Populations[p_i][i]);
                    for (int t = 0; t < Populations[p_i][i].TermsSet.Count; t++)
                    {
                        for (int p = 0; p < F[i].TermsSet[t].CountParams; p++)
                        {
                            Populations[p_i][i].TermsSet[t].Parametrs[p] = Populations[p_i][i].TermsSet[t].Parametrs[p] + calcdeltat(ct) * dX[i].TermsSet[t].Parametrs[p];
                        }
                    }
                }

                for (int i = 0; i < Populations[p_i].Count; i++)
                {
                    double temp = result.ErrorLearnSamples(Populations[p_i][i]);
                    if (double.IsNaN(temp) || double.IsInfinity(temp) || temp == 100)
                    {
                        result.UnlaidProtectionFix(Xfood);
                        temp = result.ErrorLearnSamples(Populations[p_i][i]);
                    }

                    if (temp < bestError[p_i])
                    {
                        BEST[p_i]      = new KnowlegeBasePCRules(Populations[p_i][i]);
                        bestError[p_i] = temp;
                    }
                }
            }
        }