Ejemplo n.º 1
0
        /**
         * Computes the most dominant eigen vector of A using an inverted shifted matrix.
         * The inverted shifted matrix is defined as <b>B = (A - &alpha;I)<sup>-1</sup></b> and
         * can converge faster if &alpha; is chosen wisely.
         *
         * @param A An invertible square matrix matrix.
         * @param alpha Shifting factor.
         * @return If it converged or not.
         */
        public bool computeShiftInvert(DMatrixRMaj A, double alpha)
        {
            initPower(A);

            LinearSolverDense <DMatrixRMaj> solver = LinearSolverFactory_DDRM.linear(A.numCols);

            SpecializedOps_DDRM.addIdentity(A, B, -alpha);
            solver.setA(B);

            bool converged = false;

            for (int i = 0; i < maxIterations && !converged; i++)
            {
                solver.solve(q0, q1);
                double s = NormOps_DDRM.normPInf(q1);
                CommonOps_DDRM.divide(q1, s, q2);

                converged = checkConverged(A);
            }

            return(converged);
        }
        public bool process(WatchedDoubleStepQREigen_DDRM imp, DMatrixRMaj A, DMatrixRMaj Q_h)
        {
            this._implicit = imp;

            if (N != A.numRows)
            {
                N               = A.numRows;
                Q               = new DMatrixRMaj(N, N);
                splits          = new int[N];
                origEigenvalues = new Complex_F64[N];
                eigenvectors    = new DMatrixRMaj[N];
                eigenvectorTemp = new DMatrixRMaj(N, 1);

                solver = LinearSolverFactory_DDRM.linear(0);
            }
            else
            {
//            UtilEjml.setnull(eigenvectors);
                eigenvectors = new DMatrixRMaj[N];
            }
            Array.Copy(_implicit.eigenvalues, 0, origEigenvalues, 0, N);

            _implicit.setup(A);
            _implicit.setQ(Q);
            numSplits = 0;
            onscript  = true;

//        Console.WriteLine("Orig A");
//        A.print("%12.10f");

            if (!findQandR())
            {
                return(false);
            }

            return(extractVectors(Q_h));
        }
Ejemplo n.º 3
0
        /**
         * <p>
         * Given an eigenvalue it computes an eigenvector using inverse iteration:
         * <br>
         * for i=1:MAX {<br>
         *   (A - &mu;I)z<sup>(i)</sup> = q<sup>(i-1)</sup><br>
         *   q<sup>(i)</sup> = z<sup>(i)</sup> / ||z<sup>(i)</sup>||<br>
         * &lambda;<sup>(i)</sup> =  q<sup>(i)</sup><sup>T</sup> A  q<sup>(i)</sup><br>
         * }<br>
         * </p>
         * <p>
         * NOTE: If there is another eigenvalue that is very similar to the provided one then there
         * is a chance of it converging towards that one instead.  The larger a matrix is the more
         * likely this is to happen.
         * </p>
         * @param A Matrix whose eigenvector is being computed.  Not modified.
         * @param eigenvalue The eigenvalue in the eigen pair.
         * @return The eigenvector or null if none could be found.
         */
        public static DEigenpair computeEigenVector(DMatrixRMaj A, double eigenvalue)
        {
            if (A.numRows != A.numCols)
            {
                throw new ArgumentException("Must be a square matrix.");
            }

            DMatrixRMaj M = new DMatrixRMaj(A.numRows, A.numCols);

            DMatrixRMaj x = new DMatrixRMaj(A.numRows, 1);
            DMatrixRMaj b = new DMatrixRMaj(A.numRows, 1);

            CommonOps_DDRM.fill(b, 1);

            // perturb the eigenvalue slightly so that its not an exact solution the first time
//        eigenvalue -= eigenvalue*UtilEjml.EPS*10;

            double origEigenvalue = eigenvalue;

            SpecializedOps_DDRM.addIdentity(A, M, -eigenvalue);

            double threshold = NormOps_DDRM.normPInf(A) * UtilEjml.EPS;

            double prevError = double.MaxValue;
            bool   hasWorked = false;

            LinearSolverDense <DMatrixRMaj> solver = LinearSolverFactory_DDRM.linear(M.numRows);

            double perp = 0.0001;

            for (int i = 0; i < 200; i++)
            {
                bool failed = false;
                // if the matrix is singular then the eigenvalue is within machine precision
                // of the true value, meaning that x must also be.
                if (!solver.setA(M))
                {
                    failed = true;
                }
                else
                {
                    solver.solve(b, x);
                }

                // see if solve silently failed
                if (MatrixFeatures_DDRM.hasUncountable(x))
                {
                    failed = true;
                }

                if (failed)
                {
                    if (!hasWorked)
                    {
                        // if it failed on the first trial try perturbing it some more
                        double val = i % 2 == 0 ? 1.0 - perp : 1.0 + perp;
                        // maybe this should be turn into a parameter allowing the user
                        // to configure the wise of each step

                        eigenvalue = origEigenvalue * Math.Pow(val, i / 2 + 1);
                        SpecializedOps_DDRM.addIdentity(A, M, -eigenvalue);
                    }
                    else
                    {
                        // otherwise assume that it was so accurate that the matrix was singular
                        // and return that result
                        return(new DEigenpair(eigenvalue, b));
                    }
                }
                else
                {
                    hasWorked = true;

                    b.set(x);
                    NormOps_DDRM.normalizeF(b);

                    // compute the residual
                    CommonOps_DDRM.mult(M, b, x);
                    double error = NormOps_DDRM.normPInf(x);

                    if (error - prevError > UtilEjml.EPS * 10)
                    {
                        // if the error increased it is probably converging towards a different
                        // eigenvalue
//                    CommonOps.set(b,1);
                        prevError = double.MaxValue;
                        hasWorked = false;
                        double val = i % 2 == 0 ? 1.0 - perp : 1.0 + perp;
                        eigenvalue = origEigenvalue * Math.Pow(val, 1);
                    }
                    else
                    {
                        // see if it has converged
                        if (error <= threshold || Math.Abs(prevError - error) <= UtilEjml.EPS)
                        {
                            return(new DEigenpair(eigenvalue, b));
                        }

                        // update everything
                        prevError  = error;
                        eigenvalue = VectorVectorMult_DDRM.innerProdA(b, A, b);
                    }

                    SpecializedOps_DDRM.addIdentity(A, M, -eigenvalue);
                }
            }

            return(null);
        }