Ejemplo n.º 1
0
        /// <summary>
        /// Estimates the Hurst Exponent, considering the specified hypothetical next value of the already stored time series.
        /// </summary>
        /// <remarks>
        /// Operation does not change the instance data.
        /// </remarks>
        /// <returns>The resulting linear fit object.</returns>
        public LinearFit ComputeNext(double simValue)
        {
            //Affect the simulated next value into the existing averages
            double[] avgValues = new double[_avgCollection.Count];
            Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx =>
            {
                int intervalLength = _subIntervalLengthCollection[_subIntervalIdx];
                RescaledRange intervalRescaledRange = new RescaledRange(intervalLength);
                for (int valueIdx = (_valueCollection.Count - intervalLength) + 1; valueIdx < _valueCollection.Count; valueIdx++)
                {
                    intervalRescaledRange.AddValue(_valueCollection[valueIdx]);
                }
                intervalRescaledRange.AddValue(simValue);
                avgValues[_subIntervalIdx] = _avgCollection[_subIntervalIdx].SimulateNext(intervalRescaledRange.Compute());
            });
            //Add updated existing points
            LinearFit linFit = new LinearFit();

            for (int i = 0; i < _avgCollection.Count; i++)
            {
                double x   = Math.Log(_subIntervalLengthCollection[i]);
                double avg = avgValues[i];
                double y   = 0;
                if (avg != 0)
                {
                    y = Math.Log(avg);
                }
                linFit.AddSamplePoint(x, y);
            }
            //Return
            return(linFit);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Computes Hurst exponent estimation for next hypothetical value in time series.
        /// Function does not change the instance, it is a simulation only.
        /// </summary>
        /// <param name="simValue">Next time series value</param>
        public double ComputeNext(double simValue)
        {
            //Affect new value to existing averages
            double[] avgValues = new double[_avgCollection.Count];
            Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx =>
            {
                int intervalLength = _subIntervalLengthCollection[_subIntervalIdx];
                RescalledRange intervalRescalledRange = new RescalledRange(intervalLength);
                for (int valueIdx = (_valueCollection.Count - intervalLength) + 1; valueIdx < _valueCollection.Count; valueIdx++)
                {
                    intervalRescalledRange.AddValue(_valueCollection[valueIdx]);
                }
                intervalRescalledRange.AddValue(simValue);
                avgValues[_subIntervalIdx] = _avgCollection[_subIntervalIdx].SimulateNext(intervalRescalledRange.Compute());
            });
            //Add updated existing points
            LinearFit linFit = new LinearFit();

            for (int i = 0; i < _avgCollection.Count; i++)
            {
                double x   = Math.Log(_subIntervalLengthCollection[i]);
                double avg = avgValues[i];
                double y   = 0;
                if (avg != 0)
                {
                    y = Math.Log(avg);
                }
                linFit.AddSamplePoint(x, y);
            }
            //Add new point for sub-interval length = (_timeSeries.Length + 1)
            RescalledRange fullRescalledRange = new RescalledRange(_valueCollection.Count + 1);

            foreach (double value in _valueCollection)
            {
                fullRescalledRange.AddValue(value);
            }
            fullRescalledRange.AddValue(simValue);
            double fullRangeAvg = fullRescalledRange.Compute();

            linFit.AddSamplePoint(Math.Log(_valueCollection.Count + 1), fullRangeAvg == 0 ? 0 : Math.Log(fullRangeAvg));
            //Return
            return(linFit.A);
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Estimates the Hurst Exponent.
        /// </summary>
        /// <returns>The resulting linear fit object</returns>
        public LinearFit Compute()
        {
            LinearFit linFit = new LinearFit();

            for (int i = 0; i < _avgCollection.Count; i++)
            {
                double x   = Math.Log(_subIntervalLengthCollection[i]);
                double avg = _avgCollection[i].Result;
                double y   = 0;
                if (avg != 0)
                {
                    y = Math.Log(avg);
                }
                linFit.AddSamplePoint(x, y);
            }
            return(linFit);
        }