Ejemplo n.º 1
0
        private SideReturnData GetSideReturnDataValue(double Y_Ceiling, double Y_LowerLimit, int Y_PartitionNumber)
        {
            SideReturnData sideReturnData = new SideReturnData();
            double         Y_ScaleLength  = (LiftingDistributionSelection.QValue(Y_Ceiling) - LiftingDistributionSelection.QValue(Y_LowerLimit)) / Y_PartitionNumber;

            sideReturnData.responseProbability = new double[Y_PartitionNumber + 1];
            for (int i = 0; i <= Y_PartitionNumber; i++)
            {
                if (i == 0)
                {
                    sideReturnData.responseProbability[i] = Y_LowerLimit;
                }
                else
                {
                    sideReturnData.responseProbability[i] = LiftingDistributionSelection.PValue(LiftingDistributionSelection.QValue(Y_LowerLimit) + i * Y_ScaleLength, 0, 1);
                }
            }
            sideReturnData.Y_Ceilings     = new double[sideReturnData.responseProbability.Length];
            sideReturnData.Y_LowerLimits  = new double[sideReturnData.responseProbability.Length];
            sideReturnData.responsePoints = new double[sideReturnData.responseProbability.Length];
            return(sideReturnData);
        }
Ejemplo n.º 2
0
 public double ResponsePointCalculate(double fq, double favg, double fsigma) => LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + (LiftingDistributionSelection.QValue(fq) * fsigma));
Ejemplo n.º 3
0
        //计算多组试验结果
        public MultigroupTest MultigroupTestResult(int[] nj, double[] Gj, double[] Hj, double[] muj, double[] sigmaj)
        {
            int    nfinal         = 0;
            var    multigroupTest = get_multiGroup_result(nj, muj, sigmaj, Gj, Hj, out nfinal);
            double f001           = Math.Sqrt(Math.Pow(multigroupTest.Sigma_mu, 2) + Math.Pow(multigroupTest.Sigma_sigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(0.001), 2));

            pub_function.resolution_getReso(f001, 0.000001, out multigroupTest.prec01);
            double f999 = Math.Sqrt(Math.Pow(multigroupTest.Sigma_mu, 2) + Math.Pow(multigroupTest.Sigma_sigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(0.999), 2));

            pub_function.resolution_getReso(f999, 0.000001, out multigroupTest.prec999);
            double p001 = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(multigroupTest.μ0_final) - LiftingDistributionSelection.DistributionProcess() * multigroupTest.σ0_final);

            pub_function.resolution_getReso(p001, 0.000001, out multigroupTest.rpse01);
            double p999 = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(multigroupTest.μ0_final) + LiftingDistributionSelection.DistributionProcess() * multigroupTest.σ0_final);

            pub_function.resolution_getReso(p999, 0.000001, out multigroupTest.rpse999);
            return(multigroupTest);
        }
Ejemplo n.º 4
0
        //拟然比法区间计算绘图
        public SideReturnData QuasiLikelihoodRatioMethod(double Y_Ceiling, double Y_LowerLimit, int Y_PartitionNumber, double ConfidenceLevel, double favg, double fsigma, double[] xArray, int[] vArray, int intervalChoose)
        {
            var sideReturnData = GetSideReturnDataValue(Y_Ceiling, Y_LowerLimit, Y_PartitionNumber);

            xArray = LiftingMethodStandardSelection.InverseProcessArray(xArray);
            for (int i = 0; i < sideReturnData.responseProbability.Length; i++)
            {
                IntervalEstimation ie = new IntervalEstimation();
                if (intervalChoose == 0)
                {
                    ie = GetIntervalEstimationValue(SingleSideEstimation(xArray, vArray, sideReturnData.responseProbability[i], ConfidenceLevel, LiftingMethodStandardSelection.InverseProcessValue(favg), fsigma));
                }
                else
                {
                    ie = GetIntervalEstimationValue(DoubleSideEstimation(xArray, vArray, sideReturnData.responseProbability[i], ConfidenceLevel, LiftingMethodStandardSelection.InverseProcessValue(favg), fsigma));
                }
                sideReturnData.Y_LowerLimits[i] = ie.Confidence.Down;
                sideReturnData.Y_Ceilings[i]    = ie.Confidence.Up;
                double fq = sideReturnData.responseProbability[i];
                sideReturnData.responsePoints[i] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsigma);
            }
            return(sideReturnData);
        }
Ejemplo n.º 5
0
 private double[] GetDoubleArray(double Tfw, double Tfw_dance, double fq, double favg, double fsigma, double fsigmaavg, double fsigmasigma)
 {
     double[] ie = new double[8];
     ie[0] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsigma + Tfw * Math.Sqrt(Math.Pow(fsigmaavg, 2) + Math.Pow(fsigmasigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(fq), 2)));
     ie[1] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsigma - Tfw * Math.Sqrt(Math.Pow(fsigmaavg, 2) + Math.Pow(fsigmasigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(fq), 2)));
     ie[2] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsigma + Tfw_dance * Math.Sqrt(Math.Pow(fsigmaavg, 2) + Math.Pow(fsigmasigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(fq), 2)));
     ie[3] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsigma - Tfw_dance * Math.Sqrt(Math.Pow(fsigmaavg, 2) + Math.Pow(fsigmasigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(fq), 2)));
     ie[4] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + Tfw * fsigmaavg);
     ie[5] = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) - Tfw * fsigmaavg);
     ie[6] = fsigma + Tfw * fsigmasigma;
     ie[7] = fsigma - Tfw * fsigmasigma;
     return(ie);
 }
Ejemplo n.º 6
0
        //响应点计算
        public double ResponsePointCalculation(double fq, double fsimga, double favg)
        {
            double rpc = LiftingMethodStandardSelection.ProcessValue(LiftingMethodStandardSelection.InverseProcessValue(favg) + LiftingDistributionSelection.QValue(fq) * fsimga);

            pub_function.resolution_getReso(rpc, 0.000001, out rpc);
            return(rpc);
        }
Ejemplo n.º 7
0
 public double[] ResponsePointStandardError(double Sigma_mu, double Sigma_sigma)
 {
     double[] rpse = new double[2];
     rpse[0] = pub_function.resolution_getReso(Math.Sqrt(Math.Pow(Sigma_mu, 2) + Math.Pow(Sigma_sigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(0.001), 2)), 0.000001);
     rpse[1] = pub_function.resolution_getReso(Math.Sqrt(Math.Pow(Sigma_mu, 2) + Math.Pow(Sigma_sigma, 2) * Math.Pow(LiftingDistributionSelection.QValue(0.999), 2)), 0.000001);
     return(rpse);
 }