Ejemplo n.º 1
0
        public void LossDeriv(Matrix output, Matrix expectedOutput, Matrix result, float regularizationParam)
        {
#if GPU
            KernelManager.Loss(expectedOutput, output, result, func_deriv);
#elif CPU
            switch (func_deriv)
            {
            case "quadratic_loss_deriv":
            {
                Parallel.For(0, result.Rows, (i) => result.Memory[i] += (output.Memory[i] - expectedOutput.Memory[i]) / result.Rows + regularizationParam);
            }
            break;

            case "binary_cross_entropy_deriv":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = ((1.0f - expectedOutput.Memory[i]) - output.Memory[i]);
                        float r           = (r_0 == 0) ? 0 : (1.0f / r_0);
                        result.Memory[i] += r + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;

            case "gan_disc_fake":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = (1.0f - expectedOutput.Memory[i] - output.Memory[i]);
                        float r           = (r_0 == 0) ? 0 : (1.0f / r_0);
                        result.Memory[i] += r + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;

            case "gan_disc_real":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = ((1 - expectedOutput.Memory[i]) + output.Memory[i]);
                        float r           = (r_0 == 0) ? 0 : -(1.0f / r_0);
                        result.Memory[i] += r + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;

            case "gan_gen":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = -1.0f / (output.Memory[i]);
                        result.Memory[i] += r_0 + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;
            }
#endif
        }
Ejemplo n.º 2
0
        public void Loss(Matrix output, Matrix expectedOutput, Matrix result, float regularizationParam)
        {
#if GPU
            KernelManager.Loss(expectedOutput, output, result, func);
#elif CPU
            switch (func)
            {
            case "quadratic_loss":
            {
                Parallel.For(0, result.Rows, (i) => result.Memory[i] += (0.5f * (float)Math.Pow(output.Memory[i] - expectedOutput.Memory[i], 2)) / result.Rows + regularizationParam);
            }
            break;

            case "binary_cross_entropy":
            {
                //- (z * log(y + eps) + (1-z) * log(1 - y + eps))
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        result.Memory[i] += (-(float)(expectedOutput.Memory[i] * Math.Log(output.Memory[i] + float.Epsilon) + (1 - expectedOutput.Memory[i]) * Math.Log(1 - output.Memory[i] + float.Epsilon)) / result.Rows + regularizationParam);
                    });
            }
            break;

            case "gan_disc_fake":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = (float)Math.Log(1.0f - expectedOutput.Memory[i] - output.Memory[i]);
                        result.Memory[i] += r_0 + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;

            case "gan_disc_real":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = -(float)Math.Log((1 - expectedOutput.Memory[i]) + output.Memory[i]);
                        result.Memory[i] += r_0 + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;

            case "gan_gen":
            {
                //- (z / (y + eps) - (1 - z) / (1 - y + eps));
                //z = expected out
                //y = actual output
                Parallel.For(0, result.Rows, (i) =>
                    {
                        float r_0         = -(float)Math.Log(output.Memory[i]);
                        result.Memory[i] += r_0 + regularizationParam;
                        //result.memory[i] += -(float)((expectedOutput.memory[i] / (output.memory[i] + float.Epsilon) - (1 - expectedOutput.memory[i]) / (1 - output.memory[i] + float.Epsilon))/result.Rows);
                    });
            }
            break;
            }
#endif
        }