Ejemplo n.º 1
0
        public override void LoadFromXmlElement(XmlElement el)
        {
            base.LoadFromXmlElement(el);
            int id = KInt.FromXmlString(el.GetAttribute("PersonID"));

            person = id == int.MinValue?null:new Person(id);
        }
Ejemplo n.º 2
0
        /**
         * <summary>Recursive method for computing the obstacle neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which obstacle neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private void queryObstacleTreeRecursive(Agent agent, KInt rangeSq, ObstacleTreeNode node)
        {
            if (node != null)
            {
                Obstacle obstacle1 = node.obstacle_;
                Obstacle obstacle2 = obstacle1.next_;

                KInt agentLeftOfLine = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, agent.position_);

                queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.left_ : node.right_);
                if (RVOMath.absSq(obstacle2.point_ - obstacle1.point_) == 0)
                {
                    return;
                }

                KInt distSqLine = RVOMath.sqr(agentLeftOfLine) / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0)
                    {
                        /*
                         * Try obstacle at this node only if agent is on right side of
                         * obstacle (and can see obstacle).
                         */
                        agent.insertObstacleNeighbor(node.obstacle_, rangeSq);
                    }

                    /* Try other side of line. */
                    queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.right_ : node.left_);
                }
            }
        }
Ejemplo n.º 3
0
        public override void LoadFromXmlElement(XmlElement el)
        {
            base.LoadFromXmlElement(el);
            int id = KInt.FromXmlString(el.GetAttribute("DocumentID"));

            document = id == int.MinValue ? null : new Document(id);
        }
Ejemplo n.º 4
0
    // Use this for initialization
    void Start()
    {
        KInt timestep = 0.25f;

        Simulator.Instance.setTimeStep(timestep);
        Simulator.Instance.SetSingleTonMode(true);
        Simulator.Instance.setAgentDefaults(15, 10, 5, 5, 2, 2, KInt2.zero);

        for (int i = 0; i < agentCount; i++)
        {
            float angle = ((float)i / agentCount) * (float)System.Math.PI * 2;

            Vector3 pos       = new Vector3((float)System.Math.Cos(angle), 0, (float)System.Math.Sin(angle)) * ringSize;
            Vector3 antipodal = -pos + goalOffset;

            int sid = Simulator.Instance.addAgent((KInt2)pos, neighborDist, maxNeighbors, timeHorizon, timeHorizonObst, radius, maxSpeed, velocity);

            if (sid >= 0)
            {
                GameObject go = LeanPool.Spawn(agentPrefab, new Vector3(pos.x, 0, pos.y), Quaternion.Euler(0, angle + 180, 0));
                go.transform.parent   = transform;
                go.transform.position = pos;
                GameAgent ga = go.GetComponent <GameAgent>();
                Assert.IsNotNull(ga);
                ga.sid = sid;
                m_agentMap.Add(sid, ga);
            }
        }

        Simulator.Instance.SetNumWorkers(0);
    }
Ejemplo n.º 5
0
        /**
         * <summary>Inserts an agent neighbor into the set of neighbors of this
         * agent.</summary>
         *
         * <param name="agent">A pointer to the agent to be inserted.</param>
         * <param name="rangeSq">The squared range around this agent.</param>
         */
        internal void insertAgentNeighbor(Agent agent, ref KInt rangeSq)
        {
            if (this != agent)
            {
                KInt distSq = RVOMath.absSq(position_ - agent.position_);

                if (distSq < rangeSq)
                {
                    if (agentNeighbors_.Count < maxNeighbors_)
                    {
                        agentNeighbors_.Add(new KeyValuePair <KInt, Agent>(distSq, agent));
                    }

                    int i = agentNeighbors_.Count - 1;

                    while (i != 0 && distSq < agentNeighbors_[i - 1].Key)
                    {
                        agentNeighbors_[i] = agentNeighbors_[i - 1];
                        --i;
                    }

                    agentNeighbors_[i] = new KeyValuePair <KInt, Agent>(distSq, agent);

                    if (agentNeighbors_.Count == maxNeighbors_)
                    {
                        rangeSq = agentNeighbors_[agentNeighbors_.Count - 1].Key;
                    }
                }
            }
        }
Ejemplo n.º 6
0
        public override void LoadFromXmlElement(XmlElement el)
        {
            base.LoadFromXmlElement(el);
            int id = KInt.FromXmlString(el.GetAttribute("EmployeeID"));

            employee = id == int.MinValue ? null : new Employee(id);
        }
Ejemplo n.º 7
0
 public int queryNearAgent(KInt2 point, KInt radius)
 {
     if (getNumAgents() == 0)
     {
         return(-1);
     }
     return(kdTree_.queryNearAgent(point, radius));
 }
Ejemplo n.º 8
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="numObstLines">Count of obstacle lines.</param>
         * <param name="beginLine">The line on which the 2-d linear program
         * failed.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, KInt radius, ref KInt2 result)
        {
            KInt distance = 0;

            for (int i = beginLine; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance)
                {
                    /* Result does not satisfy constraint of line i. */
                    IList <Line> projLines = new List <Line>();
                    for (int ii = 0; ii < numObstLines; ++ii)
                    {
                        projLines.Add(lines[ii]);
                    }

                    for (int j = numObstLines; j < i; ++j)
                    {
                        Line line = new Line();

                        KInt determinant = RVOMath.det(lines[i].direction, lines[j].direction);
                        if (RVOMath.fabs(determinant) <= 0)
                        {
                            /* Line i and line j are parallel. */
                            if (RVOMath.Dot(lines[i].direction, lines[j].direction) > 0)
                            {
                                /* Line i and line j point in the same direction. */

                                continue;
                            }
                            else
                            {
                                /* Line i and line j point in opposite direction. */
                                line.point = (lines[i].point + lines[j].point) / 2;
                            }
                        }
                        else
                        {
                            line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
                        }
                        line.direction = RVOMath.normalize((lines[j].direction - lines[i].direction));
                        projLines.Add(line);
                    }
                    KInt2 tempResult = result;
                    if (linearProgram2(projLines, radius, KInt2.ToInt2(-lines[i].direction.IntY, lines[i].direction.IntX), true, ref result) < projLines.Count)
                    {
                        /*
                         * This should in principle not happen. The result is by
                         * definition already in the feasible region of this
                         * linear program. If it fails, it is due to small
                         * floating point error, and the current result is kept.
                         */
                        result = tempResult;
                    }

                    distance = RVOMath.det(lines[i].direction, lines[i].point - result);
                }
            }
        }
Ejemplo n.º 9
0
        /**
         * <summary>Computes the absolute value of a float.</summary>
         *
         * <returns>The absolute value of the float.</returns>
         *
         * <param name="scalar">The float of which to compute the absolute
         * value.</param>
         */
        internal static KInt fabs(KInt scalar)
        {
            if (scalar < 0)
            {
                return(-scalar);
            }

            return(scalar);
        }
Ejemplo n.º 10
0
        private static KInt Min(KInt left, long right)
        {
            right = right * KInt.divscale / KInt2.divscale;
            if (left.IntValue < right)
            {
                return(left);
            }

            return(KInt.ToInt(right));
        }
Ejemplo n.º 11
0
        private static KInt ReduceMax(KInt value, long right)
        {
            right = right * KInt.divscale / KInt2.divscale;
            KInt data = KInt.ToInt(value.IntValue - right);

            if (data <= 0)
            {
                return(KInt.Zero);
            }
            return(data);
        }
Ejemplo n.º 12
0
        internal int queryNearAgent(KInt2 point, KInt radius)
        {
            KInt rangeSq = KInt.MaxValue;
            int  agentNo = -1;

            queryAgentTreeRecursive(point, ref rangeSq, ref agentNo, 0);
            if (rangeSq < radius * radius)
            {
                return(agentNo);
            }
            return(-1);
        }
Ejemplo n.º 13
0
        private static KInt ReduceMax(long left, KInt value)
        {
            left = left * KInt.divscale / KInt2.divscale;

            KInt data = KInt.ToInt(left - value.IntValue);

            if (data <= 0)
            {
                return(KInt.Zero);
            }
            return(data);
        }
Ejemplo n.º 14
0
        /**
         * <summary>Computes the neighbors of this agent.</summary>
         */
        internal void computeNeighbors()
        {
            obstacleNeighbors_.Clear();
            KInt rangeSq = RVOMath.sqr(timeHorizonObst_ * maxSpeed_ + radius_);

            Simulator.Instance.kdTree_.computeObstacleNeighbors(this, rangeSq);
            agentNeighbors_.Clear();

            if (maxNeighbors_ > 0)
            {
                rangeSq = RVOMath.sqr(neighborDist_);
                Simulator.Instance.kdTree_.computeAgentNeighbors(this, ref rangeSq);
            }
        }
Ejemplo n.º 15
0
        /**
         * <summary>Clears the simulation.</summary>
         */
        public void Clear()
        {
            agents_            = new List <Agent>();
            agentNo2indexDict_ = new Dictionary <int, int>();
            index2agentNoDict_ = new Dictionary <int, int>();
            defaultAgent_      = null;
            kdTree_            = new KdTree();
            obstacles_         = new List <Obstacle>();
            globalTime_        = 0;
            isError            = false;
            timeStep_          = KInt.ToInt(KInt.divscale / 10);

            SetNumWorkers(0);
        }
        public override void LoadFromXmlElement(XmlElement el)
        {
            base.LoadFromXmlElement(el);
            int id = KInt.FromXmlString(el.GetAttribute("TypeID"));

            try
            {
                Filter = byte.Parse(el.GetAttribute("Filter"));
            }
            catch
            {
                Filter = 0;
            }
            type = id == int.MinValue ? null : new DocumentType(id);
        }
Ejemplo n.º 17
0
        /**
         * <summary>Sets the default properties for any new agent that is added.
         * </summary>
         *
         * <param name="neighborDist">The default maximum distance (center point
         * to center point) to other agents a new agent takes into account in
         * the navigation. The larger this number, the longer he running time of
         * the simulation. If the number is too low, the simulation will not be
         * safe. Must be non-negative.</param>
         * <param name="maxNeighbors">The default maximum number of other agents
         * a new agent takes into account in the navigation. The larger this
         * number, the longer the running time of the simulation. If the number
         * is too low, the simulation will not be safe.</param>
         * <param name="timeHorizon">The default minimal amount of time for
         * which a new agent's velocities that are computed by the simulation
         * are safe with respect to other agents. The larger this number, the
         * sooner an agent will respond to the presence of other agents, but the
         * less freedom the agent has in choosing its velocities. Must be
         * positive.</param>
         * <param name="timeHorizonObst">The default minimal amount of time for
         * which a new agent's velocities that are computed by the simulation
         * are safe with respect to obstacles. The larger this number, the
         * sooner an agent will respond to the presence of obstacles, but the
         * less freedom the agent has in choosing its velocities. Must be
         * positive.</param>
         * <param name="radius">The default radius of a new agent. Must be
         * non-negative.</param>
         * <param name="maxSpeed">The default maximum speed of a new agent. Must
         * be non-negative.</param>
         * <param name="velocity">The default initial two-dimensional linear
         * velocity of a new agent.</param>
         */
        public void setAgentDefaults(KInt neighborDist, int maxNeighbors, KInt timeHorizon, KInt timeHorizonObst, KInt radius, KInt maxSpeed, KInt2 velocity)
        {
            if (defaultAgent_ == null)
            {
                defaultAgent_ = new Agent();
            }

            defaultAgent_.maxNeighbors_    = maxNeighbors;
            defaultAgent_.maxSpeed_        = maxSpeed;
            defaultAgent_.neighborDist_    = neighborDist;
            defaultAgent_.radius_          = radius;
            defaultAgent_.timeHorizon_     = timeHorizon;
            defaultAgent_.timeHorizonObst_ = timeHorizonObst;
            defaultAgent_.velocity_        = velocity;
        }
Ejemplo n.º 18
0
        /**
         * <summary>Computes the squared distance from a line segment with the
         * specified endpoints to a specified point.</summary>
         *
         * <returns>The squared distance from the line segment to the point.
         * </returns>
         *
         * <param name="vector1">The first endpoint of the line segment.</param>
         * <param name="vector2">The second endpoint of the line segment.
         * </param>
         * <param name="vector3">The point to which the squared distance is to
         * be calculated.</param>
         */
        internal static KInt distSqPointLineSegment(KInt2 vector1, KInt2 vector2, KInt2 vector3)
        {
            KInt r = Dot(vector3 - vector1, vector2 - vector1) / absSq(vector2 - vector1);// (v31.IntX * v21.IntX  + v31.IntY * v21.IntY) * KInt.divscale / KInt2.div2scale;

            if (r < 0)
            {
                return(absSq(vector3 - vector1));
            }

            if (r > 1)
            {
                return(absSq(vector3 - vector2));
            }

            return(absSq(vector3 - (vector1 + r * (vector2 - vector1))));
        }
Ejemplo n.º 19
0
        private void queryAgentTreeRecursive(KInt2 position, ref KInt rangeSq, ref int agentNo, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    KInt distSq = RVOMath.absSq(position - agents_[i].position_);
                    if (distSq < rangeSq)
                    {
                        rangeSq = distSq;
                        agentNo = agents_[i].id_;
                    }
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
Ejemplo n.º 20
0
        /**
         * <summary>Adds a new agent to the simulation.</summary>
         *
         * <returns>The number of the agent.</returns>
         *
         * <param name="position">The two-dimensional starting position of this
         * agent.</param>
         * <param name="neighborDist">The maximum distance (center point to
         * center point) to other agents this agent takes into account in the
         * navigation. The larger this number, the longer the running time of
         * the simulation. If the number is too low, the simulation will not be
         * safe. Must be non-negative.</param>
         * <param name="maxNeighbors">The maximum number of other agents this
         * agent takes into account in the navigation. The larger this number,
         * the longer the running time of the simulation. If the number is too
         * low, the simulation will not be safe.</param>
         * <param name="timeHorizon">The minimal amount of time for which this
         * agent's velocities that are computed by the simulation are safe with
         * respect to other agents. The larger this number, the sooner this
         * agent will respond to the presence of other agents, but the less
         * freedom this agent has in choosing its velocities. Must be positive.
         * </param>
         * <param name="timeHorizonObst">The minimal amount of time for which
         * this agent's velocities that are computed by the simulation are safe
         * with respect to obstacles. The larger this number, the sooner this
         * agent will respond to the presence of obstacles, but the less freedom
         * this agent has in choosing its velocities. Must be positive.</param>
         * <param name="radius">The radius of this agent. Must be non-negative.
         * </param>
         * <param name="maxSpeed">The maximum speed of this agent. Must be
         * non-negative.</param>
         * <param name="velocity">The initial two-dimensional linear velocity of
         * this agent.</param>
         */
        public int addAgent(KInt2 position, KInt neighborDist, int maxNeighbors, KInt timeHorizon, KInt timeHorizonObst, KInt radius, KInt maxSpeed, KInt2 velocity)
        {
            Agent agent = new Agent();

            agent.id_ = s_totalID;
            s_totalID++;
            agent.maxNeighbors_    = maxNeighbors;
            agent.maxSpeed_        = maxSpeed;
            agent.neighborDist_    = neighborDist;
            agent.position_        = position;
            agent.radius_          = radius;
            agent.timeHorizon_     = timeHorizon;
            agent.timeHorizonObst_ = timeHorizonObst;
            agent.velocity_        = velocity;
            agents_.Add(agent);
            onAddAgent();
            return(agent.id_);
        }
Ejemplo n.º 21
0
    // Use this for initialization
    void Start()
    {
        KInt timestep = 0.25f;

        Simulator.Instance.setTimeStep(timestep);
        //设置单线程,true:Unity主线程工作,false:开启多线程
        Simulator.Instance.SetSingleTonMode(true);
        Simulator.Instance.setAgentDefaults(15, 10, 5, 5, 2, 2, KInt2.zero);

        for (int i = 0; i < agentCount; i++)
        {
            float angle = ((float)i / agentCount) * (float)System.Math.PI * 2;

            Vector3 pos       = new Vector3((float)System.Math.Cos(angle), 0, (float)System.Math.Sin(angle)) * ringSize;
            Vector3 antipodal = -pos + goalOffset;

            int sid = Simulator.Instance.addAgent((KInt2)pos, neighborDist, maxNeighbors, timeHorizon, timeHorizonObst, radius, maxSpeed, velocity);

            if (sid >= 0)
            {
                GameObject go = LeanPool.Spawn(agentPrefab, new Vector3(pos.x, 0, pos.y), Quaternion.Euler(0, angle + 180, 0));
                go.transform.parent   = transform;
                go.transform.position = pos;
                RVOPathAgent ga = go.GetComponent <RVOPathAgent>();
                Assert.IsNotNull(ga);
                ga.sid = sid;
                m_agentMap.Add(sid, ga);
            }
        }

        Simulator.Instance.SetNumWorkers(0);
        SetObstacles();
        Simulator.Instance.processObstacles();

        style = new GUIStyle()
        {
            fontSize  = 26,
            alignment = TextAnchor.MiddleCenter,
            normal    = new GUIStyleState()
            {
                textColor = Color.white
            }
        };
    }
Ejemplo n.º 22
0
        protected СвязанСДокументом(XmlElement el) : base(el)
        {
            shortTextPrefix  = Resources.GetString("shortTextPrefix");
            shortTextPostfix = "";

            htmlPrefix  = Resources.GetString("htmlPrefix");
            htmlPostfix = "";

            textItemPrefix  = "[";
            textItemPostfix = "]";

            int id = KInt.FromXmlString(el.GetAttribute("ID"));

            docID = id;

            osnovaniya       = KBoolean.FromXmlString(el.GetAttribute("Osnovaniya"), true);
            osnovaniyaAll    = KBoolean.FromXmlString(el.GetAttribute("OsnovaniyaAll"), false);
            vytekayuschie    = KBoolean.FromXmlString(el.GetAttribute("Vytekayuschie"), true);
            vytekayuschieAll = KBoolean.FromXmlString(el.GetAttribute("VytekayuschieAll"), false);
        }
Ejemplo n.º 23
0
        /**
         * <summary>Inserts a static obstacle neighbor into the set of neighbors
         * of this agent.</summary>
         *
         * <param name="obstacle">The number of the static obstacle to be
         * inserted.</param>
         * <param name="rangeSq">The squared range around this agent.</param>
         */
        internal void insertObstacleNeighbor(Obstacle obstacle, KInt rangeSq)
        {
            Obstacle nextObstacle = obstacle.next_;

            KInt distSq = RVOMath.distSqPointLineSegment(obstacle.point_, nextObstacle.point_, position_);

            if (distSq < rangeSq)
            {
                obstacleNeighbors_.Add(new KeyValuePair <KInt, Obstacle>(distSq, obstacle));

                int i = obstacleNeighbors_.Count - 1;

                while (i != 0 && distSq < obstacleNeighbors_[i - 1].Key)
                {
                    obstacleNeighbors_[i] = obstacleNeighbors_[i - 1];
                    --i;
                }
                obstacleNeighbors_[i] = new KeyValuePair <KInt, Obstacle>(distSq, obstacle);
            }
        }
Ejemplo n.º 24
0
        /**
         * <summary>Recursive method for computing the agent neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which agent neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void queryAgentTreeRecursive(Agent agent, ref KInt rangeSq, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
Ejemplo n.º 25
0
        /**
         * <summary>Recursive method for querying the visibility between two
         * points within a specified radius.</summary>
         *
         * <returns>True if q1 and q2 are mutually visible within the radius;
         * false otherwise.</returns>
         *
         * <param name="q1">The first point between which visibility is to be
         * tested.</param>
         * <param name="q2">The second point between which visibility is to be
         * tested.</param>
         * <param name="radius">The radius within which visibility is to be
         * tested.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private bool queryVisibilityRecursive(KInt2 q1, KInt2 q2, KInt radius, ObstacleTreeNode node)
        {
            if (node == null)
            {
                return(true);
            }

            Obstacle obstacle1 = node.obstacle_;
            Obstacle obstacle2 = obstacle1.next_;

            KInt q1LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q1);
            KInt q2LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q2);
            KInt LengthI   = RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            // KInt invLengthI = 1.0f / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            if (q1LeftOfI >= 0 && q2LeftOfI >= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.right_)));
            }

            if (q1LeftOfI <= 0 && q2LeftOfI <= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.right_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.left_)));
            }

            if (q1LeftOfI >= 0 && q2LeftOfI <= 0)
            {
                /* One can see through obstacle from left to right. */
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
            }

            KInt point1LeftOfQ = RVOMath.leftOf(q1, q2, obstacle1.point_);
            KInt point2LeftOfQ = RVOMath.leftOf(q1, q2, obstacle2.point_);
            KInt LengthQ       = RVOMath.absSq(q2 - q1);

            // KInt invLengthQ = 1.0f / RVOMath.absSq(q2 - q1);

            return(point1LeftOfQ * point2LeftOfQ >= 0 && RVOMath.sqr(point1LeftOfQ) / LengthQ > RVOMath.sqr(radius) && RVOMath.sqr(point2LeftOfQ) / LengthQ > RVOMath.sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
        }
Ejemplo n.º 26
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <returns>The number of the line it fails on, and the number of lines
         * if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private int linearProgram2(IList <Line> lines, KInt radius, KInt2 optVelocity, bool directionOpt, ref KInt2 result)
        {
            if (directionOpt)
            {
                /*
                 * Optimize direction. Note that the optimization velocity is of
                 * unit length in this case.
                 */
                result = optVelocity * radius;
            }
            else if (RVOMath.absSq(optVelocity) > RVOMath.sqr(radius))
            {
                /* Optimize closest point and outside circle. */
                result = RVOMath.normalize(optVelocity) * radius;
            }
            else
            {
                /* Optimize closest point and inside circle. */
                result = optVelocity;
            }
            for (int i = 0; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > 0)
                {
                    /* Result does not satisfy constraint i. Compute new optimal result. */
                    KInt2 tempResult = result;
                    if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, ref result))
                    {
                        result = tempResult;
                        return(i);
                    }
                }
            }

            return(lines.Count);
        }
Ejemplo n.º 27
0
 /**
  * <summary>Sets the maximum neighbor distance of a specified agent.
  * </summary>
  *
  * <param name="agentNo">The number of the agent whose maximum neighbor
  * distance is to be modified.</param>
  * <param name="neighborDist">The replacement maximum neighbor distance.
  * Must be non-negative.</param>
  */
 public void setAgentNeighborDist(int agentNo, KInt neighborDist)
 {
     agents_[agentNo2indexDict_[agentNo]].neighborDist_ = neighborDist;
 }
Ejemplo n.º 28
0
 /**
  * <summary>Sets the maximum speed of a specified agent.</summary>
  *
  * <param name="agentNo">The number of the agent whose maximum speed is
  * to be modified.</param>
  * <param name="maxSpeed">The replacement maximum speed. Must be
  * non-negative.</param>
  */
 public void setAgentMaxSpeed(int agentNo, KInt maxSpeed)
 {
     agents_[agentNo2indexDict_[agentNo]].maxSpeed_ = maxSpeed;
 }
Ejemplo n.º 29
0
 /**
  * <summary>Performs a visibility query between the two specified points
  * with respect to the obstacles.</summary>
  *
  * <returns>A boolean specifying whether the two points are mutually
  * visible. Returns true when the obstacles have not been processed.
  * </returns>
  *
  * <param name="point1">The first point of the query.</param>
  * <param name="point2">The second point of the query.</param>
  * <param name="radius">The minimal distance between the line connecting
  * the two points and the obstacles in order for the points to be
  * mutually visible (optional). Must be non-negative.</param>
  */
 public bool queryVisibility(KInt2 point1, KInt2 point2, KInt radius)
 {
     return(kdTree_.queryVisibility(point1, point2, radius));
 }
Ejemplo n.º 30
0
        /**
         * <summary>Performs a simulation step and updates the two-dimensional
         * position and two-dimensional velocity of each agent.</summary>
         *
         * <returns>The global time after the simulation step.</returns>
         */
        public KInt doStep_Update()
        {
            if (isError)
            {
                return(globalTime_);
            }

            try
            {
                updateDeleteAgent();
                if (!singletonMode)
                {
                    if (workers_ == null)
                    {
                        workers_          = new Worker[numWorkers_];
                        doneEvents_       = new ManualResetEvent[workers_.Length];
                        workerAgentCount_ = getNumAgents();

                        for (int index_block = 0; index_block < workers_.Length; ++index_block)
                        {
                            doneEvents_[index_block] = new ManualResetEvent(false);
                            workers_[index_block]    = new Worker(index_block * getNumAgents() / workers_.Length, (index_block + 1) * getNumAgents() / workers_.Length, doneEvents_[index_block]);
                        }
                    }

                    if (workerAgentCount_ != getNumAgents())
                    {
                        workerAgentCount_ = getNumAgents();
                        for (int block = 0; block < workers_.Length; ++block)
                        {
                            workers_[block].config(block * getNumAgents() / workers_.Length, (block + 1) * getNumAgents() / workers_.Length);
                        }
                    }
                }

                kdTree_.buildAgentTree();
                if (!singletonMode)
                {
                    for (int block = 0; block < workers_.Length; ++block)
                    {
                        doneEvents_[block].Reset();
                        ThreadPool.QueueUserWorkItem(workers_[block].step_Update);
                    }

                    WaitHandle.WaitAll(doneEvents_);

                    for (int block = 0; block < workers_.Length; ++block)
                    {
                        doneEvents_[block].Reset();
                        ThreadPool.QueueUserWorkItem(workers_[block].update);
                    }

                    WaitHandle.WaitAll(doneEvents_);
                }
                else
                {
                    for (int index = 0; index < getNumAgents(); ++index)
                    {
                        agents_[index].computeNeighbors();
                        agents_[index].computeNewVelocity();
                    }

                    for (int index = 0; index < getNumAgents(); ++index)
                    {
                        agents_[index].update();
                    }
                }


                globalTime_ += timeStep_;

                return(globalTime_);
            }
            catch (Exception ex)
            {
                LogMgr.LogError(ex);
                this.isError = true;
                return(globalTime_);
            }
        }