private LogisticRegression compute(double[][] input, double[] output, double[] weights)
        {
            if (regression == null)
            {
                initialize(input, output);
                this.regression = new LogisticRegression()
                {
                    NumberOfInputs = input.Columns()
                };
            }

            var learning = new IterativeReweightedLeastSquares(regression)
            {
                Regularization = regularization,
                Iterations     = iterations,
                Tolerance      = tolerance,
                Token          = Token
            };

            learning.Learn(input, output, weights);

            this.InformationMatrix = learning.GetInformationMatrix();

            computeInformation(input, output, weights);

            innerComputed = false;
            if (ComputeInnerModels)
            {
                computeInner(input, output, weights);
            }

            return(regression);
        }
Ejemplo n.º 2
0
        public void prediction_interval()
        {
            CsvReader reader = CsvReader.FromText(Properties.Resources.logreg, true);
            DataTable data   = reader.ToTable();

            double[][] inputs = data.ToArray("AGE");
            double[]   output = data.Columns["CHD"].ToArray();

            var learner = new IterativeReweightedLeastSquares <LogisticRegression>();

            var lr = learner.Learn(inputs, output);

            Assert.AreEqual(0.111, lr.Weights[0], 5e-4);
            Assert.AreEqual(-5.309, lr.Intercept, 5e-4);

            Assert.AreEqual(1.1337, lr.StandardErrors[0], 5e-5);
            Assert.AreEqual(0.0241, lr.StandardErrors[1], 5e-5);

            double ll = lr.GetLogLikelihood(inputs, output);

            Assert.AreEqual(-53.6765, ll, 1e-4);

            double[] point = new double[] { 50 };
            double   y     = lr.Score(point);

            double[][] im = learner.GetInformationMatrix();
            //double se = lr.GetStandardError(inputs, im);
            var ci = lr.GetConfidenceInterval(point, inputs.Length, im);

            Assert.AreEqual(0.435, ci.Min, 5e-3);
            Assert.AreEqual(0.677, ci.Max, 5e-3);

            var pi = lr.GetPredictionInterval(point, inputs.Length, im);

            Assert.AreEqual(0.1405, pi.Min, 5e-3);
            Assert.AreEqual(0.9075, pi.Max, 5e-3);
        }