Ejemplo n.º 1
0
        /// <summary>
        /// The ResizeModel method gives the custom trainer the opportunity to resize the model if needed.
        /// </summary>
        /// <param name="strModel">Specifies the model descriptor.</param>
        /// <param name="rgVocabulary">Specifies the vocabulary.</param>
        /// <param name="log">Specifies the output log.</param>
        /// <returns>A new model discriptor is returned (or the same 'strModel' if no changes were made).</returns>
        /// <remarks>Note, this method is called after PreloadData.</remarks>
        string IXMyCaffeCustomTrainerRNN.ResizeModel(Log log, string strModel, BucketCollection rgVocabulary)
        {
            if (rgVocabulary == null || rgVocabulary.Count == 0)
            {
                return(strModel);
            }

            int                   nVocabCount  = rgVocabulary.Count;
            NetParameter          p            = NetParameter.FromProto(RawProto.Parse(strModel));
            string                strEmbedName = "";
            EmbedParameter        embed        = null;
            string                strIpName    = "";
            InnerProductParameter ip           = null;

            foreach (LayerParameter layer in p.layer)
            {
                if (layer.type == LayerParameter.LayerType.EMBED)
                {
                    strEmbedName = layer.name;
                    embed        = layer.embed_param;
                }
                else if (layer.type == LayerParameter.LayerType.INNERPRODUCT)
                {
                    strIpName = layer.name;
                    ip        = layer.inner_product_param;
                }
            }

            if (embed != null)
            {
                if (embed.input_dim != (uint)nVocabCount)
                {
                    log.WriteLine("WARNING: Embed layer '" + strEmbedName + "' input dim changed from " + embed.input_dim.ToString() + " to " + nVocabCount.ToString() + " to accomodate for the vocabulary count.");
                    embed.input_dim = (uint)nVocabCount;
                }
            }

            if (ip.num_output != (uint)nVocabCount)
            {
                log.WriteLine("WARNING: InnerProduct layer '" + strIpName + "' num_output changed from " + ip.num_output.ToString() + " to " + nVocabCount.ToString() + " to accomodate for the vocabulary count.");
                ip.num_output = (uint)nVocabCount;
            }

            m_rgVocabulary = rgVocabulary;

            RawProto proto = p.ToProto("root");

            return(proto.ToString());
        }
        ////////////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>   Sets up the inner product. </summary>
        ///
        /// <exception cref="Exception">    Thrown when an exception error condition occurs. </exception>
        ///
        /// <param name="param">        The parameter. </param>
        /// <param name="blobs">        The blobs. </param>
        /// <param name="name">         The name. </param>
        /// <param name="inputNames">   List of names of the inputs. </param>
        /// <param name="outputNames">  List of names of the outputs. </param>
        ///
        /// <returns>   A Linear. </returns>
        ////////////////////////////////////////////////////////////////////////////////////////////////////

        static Linear SetupInnerProduct(InnerProductParameter param, List <BlobProto> blobs, string name, string[] inputNames, string[] outputNames)
        {
            if (param.Axis != 1)
            {
                throw new Exception("Non-default axis in InnerProduct is not supported");
            }

            int width  = GetWidth(blobs[0]);
            int height = GetHeight(blobs[0]);

            float[] w = blobs[0].Datas;

            if (param.BiasTerm)
            {
                return(new Linear(width, height, !param.BiasTerm, w, blobs[1].Datas, name: name, inputNames: inputNames, outputNames: outputNames));
            }

            return(new Linear(width, height, !param.BiasTerm, w, name: name));
        }
Ejemplo n.º 3
0
        /// <summary>
        /// The ResizeModel method gives the custom trainer the opportunity to resize the model if needed.
        /// </summary>
        /// <param name="strModel">Specifies the model descriptor.</param>
        /// <param name="rgVocabulary">Specifies the vocabulary.</param>
        /// <returns>A new model discriptor is returned (or the same 'strModel' if no changes were made).</returns>
        /// <remarks>Note, this method is called after PreloadData.</remarks>
        public string ResizeModel(string strModel, BucketCollection rgVocabulary)
        {
            if (rgVocabulary == null || rgVocabulary.Count == 0)
            {
                return(strModel);
            }

            int                   nVocabCount = rgVocabulary.Count;
            NetParameter          p           = NetParameter.FromProto(RawProto.Parse(strModel));
            EmbedParameter        embed       = null;
            InnerProductParameter ip          = null;

            foreach (LayerParameter layer in p.layer)
            {
                if (layer.type == LayerParameter.LayerType.EMBED)
                {
                    embed = layer.embed_param;
                }
                else if (layer.type == LayerParameter.LayerType.INNERPRODUCT)
                {
                    ip = layer.inner_product_param;
                }
            }

            if (embed != null)
            {
                embed.input_dim = (uint)nVocabCount;
            }

            ip.num_output = (uint)nVocabCount;

            m_rgVocabulary = rgVocabulary;

            RawProto proto = p.ToProto("root");

            return(proto.ToString());
        }