Ejemplo n.º 1
0
        public void TestChangeIndex()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            indexedTable.SetIndex(new object[] { 2001, "Name2" });
            indexedTable.SetValues("A", new double[] { 5, 6, 7, 8 }); // vector
            indexedTable.Set("B", 5678);                              // scalar


            Assert.IsTrue(
                Utilities.CreateTable(new string[]                      { "Year", "Name", "A", "B" },
                                      new List <object[]> {
                new object[] { 2000, "Name1", 1, 1234 },
                new object[] { 2000, "Name1", 2, 1234 },
                new object[] { 2000, "Name1", 3, 1234 },
                new object[] { 2000, "Name1", 4, 1234 },
                new object[] { 2001, "Name2", 5, 5678 },
                new object[] { 2001, "Name2", 6, 5678 },
                new object[] { 2001, "Name2", 7, 5678 },
                new object[] { 2001, "Name2", 8, 5678 }
            })
                .IsSame(indexedTable.ToTable()));
        }
Ejemplo n.º 2
0
        /// <summary>Main run method for performing our calculations and storing data.</summary>
        public void Run()
        {
            // If the target table has not been modified during the simulation run, don't do anything.
            if (dataStore?.Writer != null && !dataStore.Writer.TablesModified.Contains(TableName))
            {
                return;
            }

            if (string.IsNullOrWhiteSpace(TableName))
            {
                throw new Exception(string.Format("Error in probability model {0}: TableName is null", Name));
            }
            else if (!dataStore.Reader.TableNames.Contains(TableName))
            {
                throw new Exception(string.Format("Error in probability model {0}: table '{1}' does not exist in the database.", Name, TableName));
            }
            DataTable simulationData = dataStore.Reader.GetData(TableName, fieldNames: dataStore.Reader.ColumnNames(TableName));

            if (simulationData != null)
            {
                IndexedDataTable simData         = new IndexedDataTable(simulationData, new string[] { FieldToSplitOn });
                IndexedDataTable probabilityData = new IndexedDataTable(new string[] { FieldToSplitOn });

                foreach (var group in simData.Groups())
                {
                    object keyValue = group.IndexValues[0];

                    // Add in our key column
                    probabilityData.SetIndex(new object[] { keyValue });
                    probabilityData.Set <object>(FieldToSplitOn, keyValue);

                    // Add in all other numeric columns.
                    bool haveWrittenProbabilityColumn = false;

                    foreach (DataColumn column in simulationData.Columns)
                    {
                        if (column.DataType == typeof(double))
                        {
                            var values = group.Get <double>(column.ColumnName).ToList();
                            values.Sort();

                            if (!haveWrittenProbabilityColumn)
                            {
                                // Add in the probability column
                                double[] probabilityValues = MathUtilities.ProbabilityDistribution(values.Count, this.Exceedence);
                                probabilityData.SetValues("Probability", probabilityValues);
                                haveWrittenProbabilityColumn = true;
                            }

                            probabilityData.SetValues(column.ColumnName, values);
                        }
                    }
                }

                // Write the stats data to the DataStore
                DataTable t = probabilityData.ToTable();
                t.TableName = this.Name;
                dataStore.Writer.WriteTable(t);
            }
        }
Ejemplo n.º 3
0
        public void TestIterateThroughGroups()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            indexedTable.SetIndex(new object[] { 2001, "Name2" });
            indexedTable.SetValues("A", new double[] { 5, 6, 7, 8 }); // vector
            indexedTable.Set("B", 5678);                              // scalar

            int i = 1;

            foreach (var group in indexedTable.Groups())
            {
                var a = group.Get <double>("A");
                if (i == 1)
                {
                    Assert.AreEqual(a, new double[] { 1, 2, 3, 4 });
                }
                else
                {
                    Assert.AreEqual(a, new double[] { 5, 6, 7, 8 });
                }
                i++;
            }
        }
Ejemplo n.º 4
0
        public Form1()
        {
            InitializeComponent();

            using (var xmlStream = Assembly.GetExecutingAssembly().GetManifestResourceStream("LiveLinqToDataSet.Northwind.xml"))
            {
                System.Diagnostics.Debug.Assert(xmlStream != null);
                XmlReaderSettings settings = new XmlReaderSettings {
                    IgnoreWhitespace = true
                };
                XmlReader reader = XmlReader.Create(xmlStream, settings);
                untypedDataSet.ReadXml(reader);
            }

            using (var xmlStream = Assembly.GetExecutingAssembly().GetManifestResourceStream("LiveLinqToDataSet.Northwind.xml"))
            {
                System.Diagnostics.Debug.Assert(xmlStream != null);
                XmlReaderSettings settings = new XmlReaderSettings {
                    IgnoreWhitespace = true
                };
                XmlReader reader = XmlReader.Create(xmlStream, settings);
                foreach (DataColumn col in typedDataSet.Tables["Orders"].Columns)
                {
                    col.ColumnMapping = MappingType.Attribute; // to make our XML file more compact
                }
                typedDataSet.Namespace = "";                   // need this because our XML file does not have xmlns defined
                typedDataSet.ReadXml(reader);
            }

            untypedCustomers = untypedDataSet.Tables["Customers"].AsIndexed();
            untypedOrders    = untypedDataSet.Tables["Orders"].AsIndexed();

            customers = typedDataSet.Customers.AsIndexed();
            orders    = typedDataSet.Orders.AsIndexed();
        }
Ejemplo n.º 5
0
        public void TestGetColumn()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            indexedTable.SetIndex(new object[] { 2001, "Name2" });
            indexedTable.SetValues("A", new double[] { 5, 6, 7, 8 }); // vector
            indexedTable.Set("B", 5678);                              // scalar

            IndexedDataTable indexedTable2 = new IndexedDataTable(indexedTable.ToTable(), new string[] { "Year" });

            indexedTable2.SetIndex(new object[] { 2000 });

            var a = indexedTable2.Get <double>("A");

            Assert.AreEqual(a, new double[] { 1, 2, 3, 4 });

            var names = indexedTable2.Get <string>("Name");

            Assert.AreEqual(names, new string[] { "Name1", "Name1", "Name1", "Name1" });

            indexedTable2.SetIndex(new object[] { 2001 });
            var b = indexedTable2.Get <int>("B");

            Assert.AreEqual(b, new int[] { 5678, 5678, 5678, 5678 });
        }
Ejemplo n.º 6
0
        /// <summary>Main run method for performing our post simulation calculations</summary>
        public void Run()
        {
            // Note - we seem to be assuming that the predicted data table is called Report.
            // If the predicted table has not been modified during the most recent simulations run, don't do anything.
            if (dataStore?.Writer != null && !dataStore.Writer.TablesModified.Contains("Report"))
            {
                return;
            }

            string    sql           = "SELECT * FROM [Report]";
            DataTable predictedData = dataStore.Reader.GetDataUsingSql(sql);

            if (predictedData != null)
            {
                IndexedDataTable predictedDataIndexed = new IndexedDataTable(predictedData, null);

                string outputNames = StringUtilities.Build(Outputs, ",", "\"", "\"");
                string inputNames  = StringUtilities.Build(Inputs, ",", "\"", "\"");
                string anovaVariableValuesFileName = GetTempFileName("anovaVariableValues", ".csv");

                // Write variables file
                using (var writer = new StreamWriter(anovaVariableValuesFileName))
                    DataTableUtilities.DataTableToText(predictedDataIndexed.ToTable(), 0, ",", true, writer, excelFriendly: true);

                string script = string.Format(
                    "inputs <- c({0})" + Environment.NewLine +
                    "inputs <- inputs[inputs != \"\"]" + Environment.NewLine +
                    "outputs <- c({1})" + Environment.NewLine +
                    "outputs <- outputs[outputs != \"\"]" + Environment.NewLine +
                    "factorial_data <- read.csv(\"{2}\")" + Environment.NewLine +
                    "indices <- data.frame(matrix(ncol = 4, nrow = 0))" + Environment.NewLine +
                    "colnames(indices) <- c(\"Input\", \"Output\", \"FirstOrder\", \"TotalOrder\")" + Environment.NewLine +
                    "for (output in outputs){{" + Environment.NewLine +
                    "  data <- factorial_data[, names(factorial_data) %in% inputs | names(factorial_data) == output]" + Environment.NewLine +
                    "  data[, names(data) %in% inputs] <- lapply(data[, names(data) %in% inputs], factor)" + Environment.NewLine +
                    "  output_mean <- mean(data[[output]])" + Environment.NewLine +
                    "  TSS <- sum((data[[output]] - output_mean)^2)" + Environment.NewLine +
                    "  anova_model <- aov(data[[output]] ~ (.)^1000, data = data[, names(data) %in% inputs])" + Environment.NewLine +
                    "  SSi <- summary(anova_model)[[1]][2]" + Environment.NewLine +
                    "  variance_contributions <- SSi / TSS" + Environment.NewLine +
                    "  parameter_names <- trimws(rownames(SSi), which = \"both\")" + Environment.NewLine +
                    "  all_results <- data.frame(parameter_names, variance_contributions, row.names = NULL)" + Environment.NewLine +
                    "  names(all_results) <- list(\"input\", \"% of variance\")  " + Environment.NewLine +
                    "  for (input in inputs){{" + Environment.NewLine +
                    "    first <- all_results[all_results$input == input, colnames(all_results) == \"% of variance\"]" + Environment.NewLine +
                    "    total <- sum(all_results[grepl(input, all_results$input), colnames(all_results) == \"% of variance\"])" + Environment.NewLine +
                    "    result <- data.frame(Input=c(input), Output=c(output), FirstOrder=c(first), TotalOrder=c(total))" + Environment.NewLine +
                    "    indices <- rbind(indices, result)" + Environment.NewLine +
                    "  }}" + Environment.NewLine +
                    "}}" + Environment.NewLine +
                    "write.table(indices, sep=\",\", row.names=FALSE)" + Environment.NewLine
                    ,
                    inputNames, outputNames, anovaVariableValuesFileName.Replace("\\", "/"));

                DataTable results = RunR(script);
                results.TableName = Name + "Statistics";
                dataStore.Writer.WriteTable(results);
            }
        }
Ejemplo n.º 7
0
 protected IncrementalLinearSolver(IncrementalLinearSolver original, Cloner cloner)
     : base(original, cloner)
 {
     problemTypeParam           = cloner.Clone(original.problemTypeParam);
     qualityUpdateIntervalParam = cloner.Clone(original.qualityUpdateIntervalParam);
     if (original.qualityPerClock != null)
     {
         qualityPerClock = cloner.Clone(original.qualityPerClock);
     }
 }
Ejemplo n.º 8
0
        public void TestNoIndexSetScalarThenSetVector()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(null);

            indexedTable.Set("A", 1234);                              // scalar
            indexedTable.SetValues("B", new double[] { 1, 2, 3, 4 }); // vector

            string expected = ReflectionUtilities.GetResourceAsString("UnitTests.APSIMShared.TestNoIndexSetScalarThenSetVector.Expected.txt");

            Assert.AreEqual(Utilities.TableToString(indexedTable.ToTable()), expected);
        }
Ejemplo n.º 9
0
        public void TestSetVectorThenSetScalar()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            string expected = ReflectionUtilities.GetResourceAsString("UnitTests.APSIMShared.IndexedDataTableTests.TestSetVectorThenScalar.Expected.txt");

            Assert.AreEqual(Utilities.TableToString(indexedTable.ToTable()), expected);
        }
Ejemplo n.º 10
0
        public void TestNoIndexSetScalarThenSetVector()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(null);

            indexedTable.Set("A", 1234);                              // scalar
            indexedTable.SetValues("B", new double[] { 1, 2, 3, 4 }); // vector

            Assert.AreEqual(Utilities.TableToString(indexedTable.ToTable()),
                            "   A,    B\r\n" +
                            "1234,1.000\r\n" +
                            "1234,2.000\r\n" +
                            "1234,3.000\r\n" +
                            "1234,4.000\r\n");
        }
Ejemplo n.º 11
0
        public void TestSetScalarThenSetVector()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.Set("A", 1234);                              // scalar
            indexedTable.SetValues("B", new double[] { 1, 2, 3, 4 }); // vector

            Assert.AreEqual(Utilities.TableToString(indexedTable.ToTable()),
                            "Year, Name,   A,    B\r\n" +
                            "2000,Name1,1234,1.000\r\n" +
                            "2000,Name1,1234,2.000\r\n" +
                            "2000,Name1,1234,3.000\r\n" +
                            "2000,Name1,1234,4.000\r\n");
        }
Ejemplo n.º 12
0
        /// <summary>
        /// The main run method called to fill tables in the specified DataStore.
        /// </summary>
        /// <param name="dataStore">The DataStore to work with</param>
        public void Run(IStorageReader dataStore)
        {
            dataStore.DeleteDataInTable(this.Name);

            DataTable simulationData = dataStore.GetData(TableName, fieldNames: dataStore.GetTableColumns(TableName));

            if (simulationData != null)
            {
                IndexedDataTable simData         = new IndexedDataTable(simulationData, new string[] { FieldToSplitOn });
                IndexedDataTable probabilityData = new IndexedDataTable(new string[] { FieldToSplitOn });

                foreach (var group in simData.Groups())
                {
                    object keyValue = group.IndexValues[0];

                    // Add in our key column
                    probabilityData.SetIndex(new object[] { keyValue });
                    probabilityData.Set <object>(FieldToSplitOn, keyValue);

                    // Add in all other numeric columns.
                    bool haveWrittenProbabilityColumn = false;

                    foreach (DataColumn column in simulationData.Columns)
                    {
                        if (column.DataType == typeof(double))
                        {
                            var values = group.Get <double>(column.ColumnName).ToList();
                            values.Sort();

                            if (!haveWrittenProbabilityColumn)
                            {
                                // Add in the probability column
                                double[] probabilityValues = MathUtilities.ProbabilityDistribution(values.Count, this.Exceedence);
                                probabilityData.SetValues("Probability", probabilityValues);
                                haveWrittenProbabilityColumn = true;
                            }

                            probabilityData.SetValues(column.ColumnName, values);
                        }
                    }
                }

                // Write the stats data to the DataStore
                DataTable t = probabilityData.ToTable();
                t.TableName = this.Name;
                dataStore.WriteTable(t);
            }
        }
Ejemplo n.º 13
0
        public void TestNoIndexSetScalarThenSetVector()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(null);

            indexedTable.Set("A", 1234);                              // scalar
            indexedTable.SetValues("B", new double[] { 1, 2, 3, 4 }); // vector

            Assert.IsTrue(
                Utilities.CreateTable(new string[]                      { "A", "B" },
                                      new List <object[]> {
                new object[] { 1234, 1 },
                new object[] { 1234, 2 },
                new object[] { 1234, 3 },
                new object[] { 1234, 4 }
            })
                .IsSame(indexedTable.ToTable()));
        }
Ejemplo n.º 14
0
        public void TestSetVectorThenSetScalar()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            Assert.IsTrue(
                Utilities.CreateTable(new string[]                      { "Year", "Name", "A", "B" },
                                      new List <object[]> {
                new object[] { 2000, "Name1", 1, 1234 },
                new object[] { 2000, "Name1", 2, 1234 },
                new object[] { 2000, "Name1", 3, 1234 },
                new object[] { 2000, "Name1", 4, 1234 }
            })
                .IsSame(indexedTable.ToTable()));
        }
Ejemplo n.º 15
0
        public void TestIndexedDataTable()
        {
            var dt = new IndexedDataTable <int>("test", "test description");
            var dr = new IndexedDataRow <int>("test row");

            dr.Values.Add(Tuple.Create(1, 1.0));
            dr.Values.Add(Tuple.Create(2, 2.0));
            dr.Values.Add(Tuple.Create(3, 3.0));
            dt.Rows.Add(dr);
            var ser = new ProtoBufSerializer();

            ser.Serialize(dt, tempFile);
            var dt2 = (IndexedDataTable <int>)ser.Deserialize(tempFile);

            Assert.AreEqual(dt.Rows["test row"].Values[0], dt2.Rows["test row"].Values[0]);
            Assert.AreEqual(dt.Rows["test row"].Values[1], dt2.Rows["test row"].Values[1]);
            Assert.AreEqual(dt.Rows["test row"].Values[2], dt2.Rows["test row"].Values[2]);
        }
Ejemplo n.º 16
0
        private static IndexedDataTable <double> NMSEGraph(double[,] coeff, double[] lambda, double[] trainNMSE, double[] testNMSE)
        {
            var errorTable       = new IndexedDataTable <double>("NMSE", "Path of NMSE values over different lambda values");
            var numNonZeroCoeffs = new int[lambda.Length];

            errorTable.VisualProperties.YAxisMaximumAuto = false;
            errorTable.VisualProperties.YAxisMinimumAuto = false;
            errorTable.VisualProperties.XAxisMaximumAuto = false;
            errorTable.VisualProperties.XAxisMinimumAuto = false;

            for (int i = 0; i < coeff.GetLength(0); i++)
            {
                for (int j = 0; j < coeff.GetLength(1); j++)
                {
                    if (!coeff[i, j].IsAlmost(0.0))
                    {
                        numNonZeroCoeffs[i]++;
                    }
                }
            }

            errorTable.VisualProperties.YAxisMinimumFixedValue = 0;
            errorTable.VisualProperties.YAxisMaximumFixedValue = 1.0;
            errorTable.VisualProperties.XAxisLogScale          = true;
            errorTable.VisualProperties.XAxisTitle             = "Lambda";
            errorTable.VisualProperties.YAxisTitle             = "Normalized mean of squared errors (NMSE)";
            errorTable.VisualProperties.SecondYAxisTitle       = "Number of variables";
            errorTable.Rows.Add(new IndexedDataRow <double>("NMSE (train)", "Path of NMSE values over different lambda values", lambda.Zip(trainNMSE, (l, v) => Tuple.Create(l, v))));
            errorTable.Rows.Add(new IndexedDataRow <double>("NMSE (test)", "Path of NMSE values over different lambda values", lambda.Zip(testNMSE, (l, v) => Tuple.Create(l, v))));
            errorTable.Rows.Add(new IndexedDataRow <double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
            if (lambda.Length > 2)
            {
                errorTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
                errorTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
            }
            errorTable.Rows["NMSE (train)"].VisualProperties.ChartType          = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["NMSE (test)"].VisualProperties.ChartType           = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["Number of variables"].VisualProperties.ChartType   = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;

            return(errorTable);
        }
Ejemplo n.º 17
0
        public void TestChangeIndex()
        {
            IndexedDataTable indexedTable = new IndexedDataTable(new string[] { "Year", "Name" });

            indexedTable.SetIndex(new object[] { 2000, "Name1" });
            indexedTable.SetValues("A", new double[] { 1, 2, 3, 4 }); // vector
            indexedTable.Set("B", 1234);                              // scalar

            indexedTable.SetIndex(new object[] { 2001, "Name2" });
            indexedTable.SetValues("A", new double[] { 5, 6, 7, 8 }); // vector
            indexedTable.Set("B", 5678);                              // scalar

            Assert.AreEqual(Utilities.TableToString(indexedTable.ToTable()),
                            "Year, Name,    A,   B\r\n" +
                            "2000,Name1,1.000,1234\r\n" +
                            "2000,Name1,2.000,1234\r\n" +
                            "2000,Name1,3.000,1234\r\n" +
                            "2000,Name1,4.000,1234\r\n" +
                            "2001,Name2,5.000,5678\r\n" +
                            "2001,Name2,6.000,5678\r\n" +
                            "2001,Name2,7.000,5678\r\n" +
                            "2001,Name2,8.000,5678\r\n");
        }
Ejemplo n.º 18
0
        private static IndexedDataTable <double> CoefficientGraph(double[,] coeff, double[] lambda, IEnumerable <string> allowedVars, IDataset ds, bool showOnlyRelevantBasisFuncs = true)
        {
            var coeffTable = new IndexedDataTable <double>("Coefficients", "The paths of standarized coefficient values over different lambda values");

            coeffTable.VisualProperties.YAxisMaximumAuto = false;
            coeffTable.VisualProperties.YAxisMinimumAuto = false;
            coeffTable.VisualProperties.XAxisMaximumAuto = false;
            coeffTable.VisualProperties.XAxisMinimumAuto = false;

            coeffTable.VisualProperties.XAxisLogScale    = true;
            coeffTable.VisualProperties.XAxisTitle       = "Lambda";
            coeffTable.VisualProperties.YAxisTitle       = "Coefficients";
            coeffTable.VisualProperties.SecondYAxisTitle = "Number of variables";

            var nLambdas         = lambda.Length;
            var nCoeff           = coeff.GetLength(1);
            var dataRows         = new IndexedDataRow <double> [nCoeff];
            var numNonZeroCoeffs = new int[nLambdas];

            var doubleVariables          = allowedVars.Where(ds.VariableHasType <double>);
            var factorVariableNames      = allowedVars.Where(ds.VariableHasType <string>);
            var factorVariablesAndValues = ds.GetFactorVariableValues(factorVariableNames, Enumerable.Range(0, ds.Rows)); //must consider all factor values (in train and test set)

            for (int i = 0; i < coeff.GetLength(0); i++)
            {
                for (int j = 0; j < coeff.GetLength(1); j++)
                {
                    if (!coeff[i, j].IsAlmost(0.0))
                    {
                        numNonZeroCoeffs[i]++;
                    }
                }
            }

            {
                int i = 0;
                foreach (var factorVariableAndValues in factorVariablesAndValues)
                {
                    foreach (var factorValue in factorVariableAndValues.Value)
                    {
                        double sigma = ds.GetStringValues(factorVariableAndValues.Key)
                                       .Select(s => s == factorValue ? 1.0 : 0.0)
                                       .StandardDeviation(); // calc std dev of binary indicator
                        var path = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
                        dataRows[i] = new IndexedDataRow <double>(factorVariableAndValues.Key + "=" + factorValue, factorVariableAndValues.Key + "=" + factorValue, path);
                        i++;
                    }
                }

                foreach (var doubleVariable in doubleVariables)
                {
                    double sigma = ds.GetDoubleValues(doubleVariable).StandardDeviation();
                    var    path  = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
                    dataRows[i] = new IndexedDataRow <double>(doubleVariable, doubleVariable, path);
                    i++;
                }

                // add to coeffTable by total weight (larger area under the curve => more important);
                foreach (var r in dataRows.OrderByDescending(r => r.Values.Select(t => t.Item2).Sum(x => Math.Abs(x))))
                {
                    coeffTable.Rows.Add(r);
                }
            }

            if (lambda.Length > 2)
            {
                coeffTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
                coeffTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
            }

            coeffTable.Rows.Add(new IndexedDataRow <double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
            coeffTable.Rows["Number of variables"].VisualProperties.ChartType   = DataRowVisualProperties.DataRowChartType.Points;
            coeffTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;

            return(coeffTable);
        }
Ejemplo n.º 19
0
        /// <summary>Main run method for performing our post simulation calculations</summary>
        /// <param name="dataStore">The data store.</param>
        public void Run(IDataStore dataStore)
        {
            DataTable predictedData = dataStore.Reader.GetData("Report", filter: "SimulationName LIKE '" + Name + "%'", orderBy: "SimulationID");

            if (predictedData != null)
            {
                // Determine how many years we have per simulation
                DataView view = new DataView(predictedData);
                view.RowFilter = "SimulationName='" + Name + "Simulation1'";
                Years          = DataTableUtilities.GetColumnAsIntegers(view, "Clock.Today.Year");

                // Create a table of all predicted values
                DataTable predictedValues = new DataTable();

                List <string> descriptiveColumnNames = new List <string>();
                List <string> variableNames          = new List <string>();
                foreach (double year in Years)
                {
                    view.RowFilter = "Clock.Today.Year=" + year;

                    foreach (DataColumn predictedColumn in view.Table.Columns)
                    {
                        if (predictedColumn.DataType == typeof(double))
                        {
                            double[] valuesForYear = DataTableUtilities.GetColumnAsDoubles(view, predictedColumn.ColumnName);
                            if (valuesForYear.Distinct().Count() == 1)
                            {
                                if (!descriptiveColumnNames.Contains(predictedColumn.ColumnName))
                                {
                                    descriptiveColumnNames.Add(predictedColumn.ColumnName);
                                }
                            }
                            else
                            {
                                DataTableUtilities.AddColumn(predictedValues, predictedColumn.ColumnName + year, valuesForYear);
                                if (!variableNames.Contains(predictedColumn.ColumnName))
                                {
                                    variableNames.Add(predictedColumn.ColumnName);
                                }
                            }
                        }
                    }
                }

                // Run R
                DataTable eeDataRaw;
                DataTable statsDataRaw;
                RunRPostSimulation(predictedValues, out eeDataRaw, out statsDataRaw);

                // Get ee data from R and store in ee table.
                // EE data from R looks like:
                // "ResidueWt", "FASW", "CN2", "Cona", "variable","path"
                // - 22.971008269563,0.00950570342209862,-0.00379987333757356,56.7587080430652,"FallowEvaporation1996",1
                // - 25.790599484188, 0.0170777988614538, -0.0265991133629069,58.0240658644712,"FallowEvaporation1996",2
                // - 26.113599477728, 0.0113851992409871, 0.0113996200126667,57.9689677010766,"FallowEvaporation1996",3
                // - 33.284199334316, 0.0323193916349732, -0.334388853704853,60.5376820772641,"FallowEvaporation1996",4
                DataView         eeView     = new DataView(eeDataRaw);
                IndexedDataTable eeTableKey = new IndexedDataTable(new string[] { "Parameter", "Year" });

                // Create a path variable.
                var pathValues = Enumerable.Range(1, NumPaths).ToArray();

                foreach (var parameter in Parameters)
                {
                    foreach (DataColumn column in predictedValues.Columns)
                    {
                        eeView.RowFilter = "variable = '" + column.ColumnName + "'";
                        if (eeView.Count != NumPaths)
                        {
                            throw new Exception("Found only " + eeView.Count + " paths for variable " + column.ColumnName + " in ee table");
                        }
                        int    year         = Convert.ToInt32(column.ColumnName.Substring(column.ColumnName.Length - 4));
                        string variableName = column.ColumnName.Substring(0, column.ColumnName.Length - 4);

                        eeTableKey.SetIndex(new object[] { parameter.Name, year });

                        List <double> values = DataTableUtilities.GetColumnAsDoubles(eeView, parameter.Name).ToList();
                        for (int i = 0; i < values.Count; i++)
                        {
                            values[i] = Math.Abs(values[i]);
                        }
                        var runningMean = MathUtilities.RunningAverage(values);

                        eeTableKey.SetValues("Path", pathValues);
                        eeTableKey.SetValues(variableName + ".MuStar", runningMean);
                    }
                }
                DataTable eeTable = eeTableKey.ToTable();
                eeTable.TableName = Name + "PathAnalysis";

                // Get stats data from R and store in MuStar table.
                // Stats data coming back from R looks like:
                // "mu", "mustar", "sigma", "param","variable"
                // -30.7331368183818, 30.7331368183818, 5.42917964248002,"ResidueWt","FallowEvaporation1996"
                // -0.0731299918470997,0.105740687296631,0.450848277601353, "FASW","FallowEvaporation1996"
                // -0.83061431285624,0.839772007599748, 1.75541097254145, "CN2","FallowEvaporation1996"
                // 62.6942591520838, 62.6942591520838, 5.22778043503867, "Cona","FallowEvaporation1996"
                // -17.286285468283, 19.4018404625051, 24.1361388348929,"ResidueWt","FallowRunoff1996"
                // 8.09850688306722, 8.09852589447407, 15.1988107373113, "FASW","FallowRunoff1996"
                // 18.6196168461051, 18.6196168461051, 15.1496277765849, "CN2","FallowRunoff1996"
                // -7.12794888887507, 7.12794888887507, 5.54014788597839, "Cona","FallowRunoff1996"
                IndexedDataTable tableKey = new IndexedDataTable(new string[2] {
                    "Parameter", "Year"
                });

                foreach (DataRow row in statsDataRaw.Rows)
                {
                    string variable = row["variable"].ToString();
                    int    year     = Convert.ToInt32(variable.Substring(variable.Length - 4));
                    variable = variable.Substring(0, variable.Length - 4);
                    tableKey.SetIndex(new object[] { row["param"], year });

                    tableKey.Set(variable + ".Mu", row["mu"]);
                    tableKey.Set(variable + ".MuStar", row["mustar"]);
                    tableKey.Set(variable + ".Sigma", row["sigma"]);

                    // Need to bring in the descriptive values.
                    view.RowFilter = "Clock.Today.Year=" + year;
                    foreach (var descriptiveColumnName in descriptiveColumnNames)
                    {
                        var values = DataTableUtilities.GetColumnAsStrings(view, descriptiveColumnName);
                        if (values.Distinct().Count() == 1)
                        {
                            tableKey.Set(descriptiveColumnName, view[0][descriptiveColumnName]);
                        }
                    }
                }
                DataTable muStarTable = tableKey.ToTable();
                muStarTable.TableName = Name + "Statistics";

                dataStore.Writer.WriteTable(eeTable);
                dataStore.Writer.WriteTable(muStarTable);
            }
        }
Ejemplo n.º 20
0
        /// <summary>Main run method for performing our post simulation calculations</summary>
        public void Run()
        {
            // If the predicted table has not been modified, don't do anything.
            // This can happen if other simulations were run but the Morris model was not.
            if (dataStore?.Writer != null && !dataStore.Writer.TablesModified.Contains(TableName))
            {
                return;
            }

            DataTable predictedData = dataStore.Reader.GetData(TableName);

            if (predictedData != null)
            {
                // Determine how many aggregation values we have per simulation
                DataView view = new DataView(predictedData);
                view.RowFilter    = "SimulationName='" + Name + "Simulation1'";
                AggregationValues = DataTableUtilities.GetColumnAsStrings(view, AggregationVariableName);

                // Create a table of all predicted values
                DataTable predictedValues = new DataTable();

                List <string> descriptiveColumnNames = new List <string>();
                List <string> variableNames          = new List <string>();
                foreach (string aggregationValue in AggregationValues)
                {
                    string value = aggregationValue;
                    if (DateTime.TryParse(value, out DateTime date))
                    {
                        value = date.ToString("yyyy-MM-dd");
                    }
                    view.RowFilter = $"{AggregationVariableName}='{value}'";

                    foreach (DataColumn predictedColumn in view.Table.Columns)
                    {
                        if (predictedColumn.DataType == typeof(double))
                        {
                            double[] values = DataTableUtilities.GetColumnAsDoubles(view, predictedColumn.ColumnName);
                            if (values.Distinct().Count() == 1)
                            {
                                if (!descriptiveColumnNames.Contains(predictedColumn.ColumnName))
                                {
                                    descriptiveColumnNames.Add(predictedColumn.ColumnName);
                                }
                            }
                            else
                            {
                                DataTableUtilities.AddColumn(predictedValues, predictedColumn.ColumnName + "_" + value, values);
                                if (!variableNames.Contains(predictedColumn.ColumnName))
                                {
                                    variableNames.Add(predictedColumn.ColumnName);
                                }
                            }
                        }
                    }
                }

                // Run R
                DataTable eeDataRaw;
                DataTable statsDataRaw;
                RunRPostSimulation(predictedValues, out eeDataRaw, out statsDataRaw);

                // Get ee data from R and store in ee table.
                // EE data from R looks like:
                // "ResidueWt", "FASW", "CN2", "Cona", "variable","path"
                // - 22.971008269563,0.00950570342209862,-0.00379987333757356,56.7587080430652,"FallowEvaporation1996",1
                // - 25.790599484188, 0.0170777988614538, -0.0265991133629069,58.0240658644712,"FallowEvaporation1996",2
                // - 26.113599477728, 0.0113851992409871, 0.0113996200126667,57.9689677010766,"FallowEvaporation1996",3
                // - 33.284199334316, 0.0323193916349732, -0.334388853704853,60.5376820772641,"FallowEvaporation1996",4
                DataView         eeView     = new DataView(eeDataRaw);
                IndexedDataTable eeTableKey = new IndexedDataTable(new string[] { "Parameter", AggregationVariableName });

                // Create a path variable.
                var pathValues = Enumerable.Range(1, NumPaths).ToArray();

                foreach (var parameter in Parameters)
                {
                    foreach (DataColumn column in predictedValues.Columns)
                    {
                        eeView.RowFilter = "variable = '" + column.ColumnName + "'";
                        if (eeView.Count != NumPaths)
                        {
                            throw new Exception("Found only " + eeView.Count + " paths for variable " + column.ColumnName + " in ee table");
                        }
                        string aggregationValue = StringUtilities.GetAfter(column.ColumnName, "_");
                        string variableName     = StringUtilities.RemoveAfter(column.ColumnName, '_');

                        eeTableKey.SetIndex(new object[] { parameter.Name, aggregationValue });

                        List <double> values = DataTableUtilities.GetColumnAsDoubles(eeView, parameter.Name).ToList();
                        for (int i = 0; i < values.Count; i++)
                        {
                            values[i] = Math.Abs(values[i]);
                        }
                        var runningMean = MathUtilities.RunningAverage(values);

                        eeTableKey.SetValues("Path", pathValues);
                        eeTableKey.SetValues(variableName + ".MuStar", runningMean);
                    }
                }
                DataTable eeTable = eeTableKey.ToTable();
                eeTable.TableName = Name + "PathAnalysis";

                // Get stats data from R and store in MuStar table.
                // Stats data coming back from R looks like:
                // "mu", "mustar", "sigma", "param","variable"
                // -30.7331368183818, 30.7331368183818, 5.42917964248002,"ResidueWt","FallowEvaporation1996"
                // -0.0731299918470997,0.105740687296631,0.450848277601353, "FASW","FallowEvaporation1996"
                // -0.83061431285624,0.839772007599748, 1.75541097254145, "CN2","FallowEvaporation1996"
                // 62.6942591520838, 62.6942591520838, 5.22778043503867, "Cona","FallowEvaporation1996"
                // -17.286285468283, 19.4018404625051, 24.1361388348929,"ResidueWt","FallowRunoff1996"
                // 8.09850688306722, 8.09852589447407, 15.1988107373113, "FASW","FallowRunoff1996"
                // 18.6196168461051, 18.6196168461051, 15.1496277765849, "CN2","FallowRunoff1996"
                // -7.12794888887507, 7.12794888887507, 5.54014788597839, "Cona","FallowRunoff1996"
                IndexedDataTable tableKey = new IndexedDataTable(new string[2] {
                    "Parameter", AggregationVariableName
                });

                foreach (DataRow row in statsDataRaw.Rows)
                {
                    string variable         = row["variable"].ToString();
                    string aggregationValue = StringUtilities.GetAfter(variable, "_");
                    variable = StringUtilities.RemoveAfter(variable, '_');
                    tableKey.SetIndex(new object[] { row["param"], aggregationValue });

                    tableKey.Set(variable + ".Mu", row["mu"]);
                    tableKey.Set(variable + ".MuStar", row["mustar"]);
                    tableKey.Set(variable + ".Sigma", row["sigma"]);

                    // Need to bring in the descriptive values.
                    view.RowFilter = $"{AggregationVariableName}='{aggregationValue}'";
                    foreach (var descriptiveColumnName in descriptiveColumnNames)
                    {
                        var values = DataTableUtilities.GetColumnAsStrings(view, descriptiveColumnName);
                        if (values.Distinct().Count() == 1)
                        {
                            tableKey.Set(descriptiveColumnName, view[0][descriptiveColumnName]);
                        }
                    }
                }
                DataTable muStarTable = tableKey.ToTable();
                muStarTable.TableName = Name + "Statistics";

                dataStore.Writer.WriteTable(eeTable);
                dataStore.Writer.WriteTable(muStarTable);
            }
        }
Ejemplo n.º 21
0
        /// <summary>Main run method for performing our calculations and storing data.</summary>
        public void Run()
        {
            if (dataStore?.Writer != null && !dataStore.Writer.TablesModified.Contains("Report"))
            {
                return;
            }

            DataTable predictedData = dataStore.Reader.GetData("Report", filter: "SimulationName LIKE '" + Name + "%'", orderBy: "SimulationID");

            if (predictedData != null)
            {
                IndexedDataTable variableValues = new IndexedDataTable(null);

                // Determine how many years we have per simulation
                DataView view = new DataView(predictedData);
                view.RowFilter = "SimulationName='" + Name + "Simulation1'";
                var Years = DataTableUtilities.GetColumnAsIntegers(view, "Clock.Today.Year");

                // Create a results table.
                IndexedDataTable results;
                if (Years.Count() > 1)
                {
                    results = new IndexedDataTable(new string[] { "Year" });
                }
                else
                {
                    results = new IndexedDataTable(null);
                }


                // Loop through all years and perform analysis on each.
                List <string> errorsFromR = new List <string>();
                foreach (double year in Years)
                {
                    view.RowFilter = "Clock.Today.Year=" + year;

                    foreach (DataColumn predictedColumn in predictedData.Columns)
                    {
                        if (predictedColumn.DataType == typeof(double))
                        {
                            var values = DataTableUtilities.GetColumnAsDoubles(view, predictedColumn.ColumnName);
                            if (values.Distinct().Count() > 1)
                            {
                                variableValues.SetValues(predictedColumn.ColumnName, values);
                            }
                        }
                    }

                    string paramNames                  = StringUtilities.Build(Parameters.Select(p => p.Name), ",", "\"", "\"");
                    string sobolx1FileName             = GetTempFileName("sobolx1", ".csv");
                    string sobolx2FileName             = GetTempFileName("sobolx2", ".csv");
                    string sobolVariableValuesFileName = GetTempFileName("sobolvariableValues", ".csv");

                    // Write variables file
                    using (var writer = new StreamWriter(sobolVariableValuesFileName))
                        DataTableUtilities.DataTableToText(variableValues.ToTable(), 0, ",", true, writer, excelFriendly: false, decimalFormatString: "F6");

                    // Write X1
                    using (var writer = new StreamWriter(sobolx1FileName))
                        DataTableUtilities.DataTableToText(X1, 0, ",", true, writer, excelFriendly: false, decimalFormatString: "F6");

                    // Write X2
                    using (var writer = new StreamWriter(sobolx2FileName))
                        DataTableUtilities.DataTableToText(X2, 0, ",", true, writer, excelFriendly: false, decimalFormatString: "F6");

                    string script = string.Format(
                        $".libPaths(c('{R.PackagesDirectory}', .libPaths()))" + Environment.NewLine +
                        $"library('boot', lib.loc = '{R.PackagesDirectory}')" + Environment.NewLine +
                        $"library('sensitivity', lib.loc = '{R.PackagesDirectory}')" + Environment.NewLine +
                        "params <- c({0})" + Environment.NewLine +
                        "n <- {1}" + Environment.NewLine +
                        "nparams <- {2}" + Environment.NewLine +
                        "X1 <- read.csv(\"{3}\")" + Environment.NewLine +
                        "X2 <- read.csv(\"{4}\")" + Environment.NewLine +
                        "sa <- sobolSalt(model = NULL, X1, X2, scheme=\"A\", nboot = 100)" + Environment.NewLine +
                        "variableValues = read.csv(\"{5}\")" + Environment.NewLine +
                        "for (columnName in colnames(variableValues))" + Environment.NewLine +
                        "{{" + Environment.NewLine +
                        "  sa$y <- variableValues[[columnName]]" + Environment.NewLine +
                        "  tell(sa)" + Environment.NewLine +
                        "  sa$S$Parameter <- params" + Environment.NewLine +
                        "  sa$T$Parameter <- params" + Environment.NewLine +
                        "  sa$S$ColumnName <- columnName" + Environment.NewLine +
                        "  sa$T$ColumnName <- columnName" + Environment.NewLine +
                        "  sa$S$Indices <- \"FirstOrder\"" + Environment.NewLine +
                        "  sa$T$Indices <- \"Total\"" + Environment.NewLine +
                        "  if (!exists(\"allData\"))" + Environment.NewLine +
                        "    allData <- rbind(sa$S, sa$T)" + Environment.NewLine +
                        "  else" + Environment.NewLine +
                        "    allData <- rbind(allData, sa$S, sa$T)" + Environment.NewLine +
                        "}}" + Environment.NewLine +
                        "write.table(allData, sep=\",\", row.names=FALSE)" + Environment.NewLine
                        ,
                        paramNames, NumPaths, Parameters.Count,
                        sobolx1FileName.Replace("\\", "/"),
                        sobolx1FileName.Replace("\\", "/"),
                        sobolVariableValuesFileName.Replace("\\", "/"));

                    DataTable resultsForYear = null;
                    try
                    {
                        resultsForYear = RunR(script);

                        // Put output from R into results table.
                        if (Years.Count() > 1)
                        {
                            results.SetIndex(new object[] { year.ToString() });
                        }

                        foreach (DataColumn col in resultsForYear.Columns)
                        {
                            if (col.DataType == typeof(string))
                            {
                                results.SetValues(col.ColumnName, DataTableUtilities.GetColumnAsStrings(resultsForYear, col.ColumnName));
                            }
                            else
                            {
                                results.SetValues(col.ColumnName, DataTableUtilities.GetColumnAsDoubles(resultsForYear, col.ColumnName));
                            }
                        }
                    }
                    catch (Exception err)
                    {
                        string msg = err.Message;

                        if (Years.Count() > 1)
                        {
                            msg = "Year " + year + ": " + msg;
                        }
                        errorsFromR.Add(msg);
                    }
                }
                var resultsRawTable = results.ToTable();
                resultsRawTable.TableName = Name + "Statistics";
                dataStore.Writer.WriteTable(resultsRawTable);

                if (errorsFromR.Count > 0)
                {
                    string msg = StringUtilities.BuildString(errorsFromR.ToArray(), Environment.NewLine);
                    throw new Exception(msg);
                }
            }
        }
        private void CreateSolutionPath()
        {
            double[] lambda;
            double[] trainNMSE;
            double[] testNMSE;
            double[,] coeff;
            double[] intercept;
            RunElasticNetLinearRegression(Problem.ProblemData, Penality, out lambda, out trainNMSE, out testNMSE, out coeff, out intercept);

            var coeffTable = new IndexedDataTable <double>("Coefficients", "The paths of standarized coefficient values over different lambda values");

            coeffTable.VisualProperties.YAxisMaximumAuto = false;
            coeffTable.VisualProperties.YAxisMinimumAuto = false;
            coeffTable.VisualProperties.XAxisMaximumAuto = false;
            coeffTable.VisualProperties.XAxisMinimumAuto = false;

            coeffTable.VisualProperties.XAxisLogScale    = true;
            coeffTable.VisualProperties.XAxisTitle       = "Lambda";
            coeffTable.VisualProperties.YAxisTitle       = "Coefficients";
            coeffTable.VisualProperties.SecondYAxisTitle = "Number of variables";

            var nLambdas         = lambda.Length;
            var nCoeff           = coeff.GetLength(1);
            var dataRows         = new IndexedDataRow <double> [nCoeff];
            var allowedVars      = Problem.ProblemData.AllowedInputVariables.ToArray();
            var numNonZeroCoeffs = new int[nLambdas];

            var ds = Problem.ProblemData.Dataset;
            var doubleVariables          = allowedVars.Where(ds.VariableHasType <double>);
            var factorVariableNames      = allowedVars.Where(ds.VariableHasType <string>);
            var factorVariablesAndValues = ds.GetFactorVariableValues(factorVariableNames, Enumerable.Range(0, ds.Rows)); // must consider all factor values (in train and test set)

            {
                int i = 0;
                foreach (var factorVariableAndValues in factorVariablesAndValues)
                {
                    foreach (var factorValue in factorVariableAndValues.Value)
                    {
                        double sigma = ds.GetStringValues(factorVariableAndValues.Key)
                                       .Select(s => s == factorValue ? 1.0 : 0.0)
                                       .StandardDeviation(); // calc std dev of binary indicator
                        var path = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
                        dataRows[i] = new IndexedDataRow <double>(factorVariableAndValues.Key + "=" + factorValue, factorVariableAndValues.Key + "=" + factorValue, path);
                        i++;
                    }
                }

                foreach (var doubleVariable in doubleVariables)
                {
                    double sigma = ds.GetDoubleValues(doubleVariable).StandardDeviation();
                    var    path  = Enumerable.Range(0, nLambdas).Select(r => Tuple.Create(lambda[r], coeff[r, i] * sigma)).ToArray();
                    dataRows[i] = new IndexedDataRow <double>(doubleVariable, doubleVariable, path);
                    i++;
                }
                // add to coeffTable by total weight (larger area under the curve => more important);
                foreach (var r in dataRows.OrderByDescending(r => r.Values.Select(t => t.Item2).Sum(x => Math.Abs(x))))
                {
                    coeffTable.Rows.Add(r);
                }
            }

            for (int i = 0; i < coeff.GetLength(0); i++)
            {
                for (int j = 0; j < coeff.GetLength(1); j++)
                {
                    if (!coeff[i, j].IsAlmost(0.0))
                    {
                        numNonZeroCoeffs[i]++;
                    }
                }
            }
            if (lambda.Length > 2)
            {
                coeffTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
                coeffTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
            }
            coeffTable.Rows.Add(new IndexedDataRow <double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
            coeffTable.Rows["Number of variables"].VisualProperties.ChartType   = DataRowVisualProperties.DataRowChartType.Points;
            coeffTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;

            Results.Add(new Result(coeffTable.Name, coeffTable.Description, coeffTable));

            var errorTable = new IndexedDataTable <double>("NMSE", "Path of NMSE values over different lambda values");

            errorTable.VisualProperties.YAxisMaximumAuto = false;
            errorTable.VisualProperties.YAxisMinimumAuto = false;
            errorTable.VisualProperties.XAxisMaximumAuto = false;
            errorTable.VisualProperties.XAxisMinimumAuto = false;

            errorTable.VisualProperties.YAxisMinimumFixedValue = 0;
            errorTable.VisualProperties.YAxisMaximumFixedValue = 1.0;
            errorTable.VisualProperties.XAxisLogScale          = true;
            errorTable.VisualProperties.XAxisTitle             = "Lambda";
            errorTable.VisualProperties.YAxisTitle             = "Normalized mean of squared errors (NMSE)";
            errorTable.VisualProperties.SecondYAxisTitle       = "Number of variables";
            errorTable.Rows.Add(new IndexedDataRow <double>("NMSE (train)", "Path of NMSE values over different lambda values", lambda.Zip(trainNMSE, (l, v) => Tuple.Create(l, v))));
            errorTable.Rows.Add(new IndexedDataRow <double>("NMSE (test)", "Path of NMSE values over different lambda values", lambda.Zip(testNMSE, (l, v) => Tuple.Create(l, v))));
            errorTable.Rows.Add(new IndexedDataRow <double>("Number of variables", "The number of non-zero coefficients for each step in the path", lambda.Zip(numNonZeroCoeffs, (l, v) => Tuple.Create(l, (double)v))));
            if (lambda.Length > 2)
            {
                errorTable.VisualProperties.XAxisMinimumFixedValue = Math.Pow(10, Math.Floor(Math.Log10(lambda.Last())));
                errorTable.VisualProperties.XAxisMaximumFixedValue = Math.Pow(10, Math.Ceiling(Math.Log10(lambda.Skip(1).First())));
            }
            errorTable.Rows["NMSE (train)"].VisualProperties.ChartType          = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["NMSE (test)"].VisualProperties.ChartType           = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["Number of variables"].VisualProperties.ChartType   = DataRowVisualProperties.DataRowChartType.Points;
            errorTable.Rows["Number of variables"].VisualProperties.SecondYAxis = true;

            Results.Add(new Result(errorTable.Name, errorTable.Description, errorTable));
        }
Ejemplo n.º 23
0
        public Form1()
        {
            InitializeComponent();

            // Filling the data set with data
            string dataPath = string.Empty;

            foreach (DataColumn col in typedDataSet.Tables["Orders"].Columns)
            {
                col.ColumnMapping = MappingType.Attribute; // to make our XML file more compact
            }
            typedDataSet.Namespace = "";                   // need this because our XML file does not have xmlns defined

            using (var xmlStream = Assembly.GetExecutingAssembly().GetManifestResourceStream("LiveViewsDataSet.Northwind.xml"))
            {
                System.Diagnostics.Debug.Assert(xmlStream != null);
                XmlReaderSettings settings = new XmlReaderSettings {
                    IgnoreWhitespace = true
                };
                XmlReader reader = XmlReader.Create(xmlStream, settings);
                typedDataSet.ReadXml(reader);
            }

            // Creating indexes. It is optional, only for performance optimization.
            // If you delete this, the functionality will be the same and slowdown will be noticeable only on large data sets.
            // If you don't need to create indexes, you can use typedDataSet.Customers.AsLive() below instead of customers.AsLive(), so you don't need the
            // IndexedDataTable<> class, can proceed directly to View<NorthwindDataSet.CustomersRow>.
            IndexedDataTable <NorthwindDataSet.CustomersRow> customers = typedDataSet.Customers.AsIndexed();
            IndexedDataTable <NorthwindDataSet.OrdersRow>    orders    = typedDataSet.Orders.AsIndexed();

            customers.Indexes.Add(c => c.CustomerID, true);
            orders.Indexes.Add(o => o.CustomerID);
            orders.Indexes.Add(o => o.ShipCity);
            //...end of creating indexes

            // Make the tables live:
            customersView = typedDataSet.Customers.AsLive();
            ordersView    = typedDataSet.Orders.AsLive().AsUpdatable(); // AsUpdatable() makes it possible for
            // the user to change data directly in the grid showing the join view below.
            // Order fields can be changed by the user there, Customer fields can't be changed by the user
            // Specifying this argument is needed only if you need to change data directly in the view instead
            // of changing the base data, and then only for query operators with more than one argument such as Join.

            // Creating a live view over the base data
            IListSource view =
                (from o in ordersView
                 where o.ShipCity == "London" || o.ShipCity == "Colchester"
                 select new { OrderID = o.OrderID, CustomerID = o.CustomerID, ShipCity = o.ShipCity }).AsDynamic();

            ShowViewInGrid(view, dataGridView1);

            // Creating another live view over the base data
            customerOrderView =
                from c in customersView
                join o in ordersView on c.CustomerID equals o.CustomerID
                where o.ShipCity == "London" || o.ShipCity == "Colchester"
                // Using a user-defined class like CustomerOrder is not mandatory. Anonymous class could be used instead as in the
                // query above, but in that case we could not assign it to a variable like customerOrderView, defined outside
                // of the scope of this method, because anonymous classes are only available in local scope.
                select new CustomerOrder {
                CustomerID = c.CustomerID, City = c.City, OrderID = o.OrderID, ShipCity = o.ShipCity
            };

            ShowViewInGrid(customerOrderView, dataGridView2);

            // See the readme.txt file in the project folder for a description of the live view functionality you can try in this sample
        }