Ejemplo n.º 1
0
        public virtual ImageDescription filter(ImageDescription inputImage)
        {
            inputImage.computeGrayscale();

            int imageSizeX = inputImage.sizeX;
            int imageSizeY = inputImage.sizeY;

            byte[,] inputGray  = inputImage.gray;
            byte[,] outputGray = new byte[imageSizeY, imageSizeX];

            // 1. Gauss
            float[,] gaussConvolutionMatrix = FilterBankUtil.generateNormalizedGaussConvolutionMatrix(sigma, 5);
            float[,] gaussResult            = ImageDescriptionUtil.mirroredMarginConvolution(inputGray, gaussConvolutionMatrix);

            // 2. Gradient
            float[,] dx = ImageDescriptionUtil.mirroredMarginConvolution(gaussResult, FilterBankUtil.normalizedSobelX);
            float[,] dy = ImageDescriptionUtil.mirroredMarginConvolution(gaussResult, FilterBankUtil.normalizedSobelY);

            // 3. Gradient Amplitude
            float[,] amplitudeResult = new float[imageSizeY, imageSizeX];
            for (int i = 0; i < imageSizeY; i++)
            {
                for (int j = 0; j < imageSizeX; j++)
                {
                    amplitudeResult[i, j] = (float)Math.Sqrt(dx[i, j] * dx[i, j] + dy[i, j] * dy[i, j]);
                }
            }

            for (var i = 0; i < imageSizeY; i++)
            {
                for (var j = 0; j < imageSizeX; j++)
                {
                    if (amplitudeResult[i, j] < 255)
                    {
                        outputGray[i, j] = (byte)(amplitudeResult[i, j] + 0.5f);
                    }
                    else
                    {
                        outputGray[i, j] = 255;
                    }
                }
            }

            ImageDescription outputImage = new ImageDescription();

            outputImage.sizeX = imageSizeX;
            outputImage.sizeY = imageSizeY;
            foreach (ColorChannelEnum colorChannel in Enum.GetValues(typeof(ColorChannelEnum)))
            {
                outputImage.setColorChannel(colorChannel, inputImage.getColorChannel(colorChannel));
            }
            outputImage.setColorChannel(ColorChannelEnum.Sobel, outputGray);

            return(outputImage);
        }
Ejemplo n.º 2
0
        public ImageDescription filter(ImageDescription inputImage)
        {
            ImageDescription outputImage = new ImageDescription();

            outputImage.sizeX = newSizeX;
            outputImage.sizeY = newSizeY;

            foreach (ColorChannelEnum colorChannel in colorChannelsToFilter)
            {
                byte[,] channel = inputImage.getColorChannel(colorChannel);
                ImageDescription temp = new ImageDescription();
                temp.sizeX     = inputImage.sizeX;
                temp.sizeY     = inputImage.sizeY;
                temp.grayscale = true;
                temp.setColorChannel(ColorChannelEnum.Gray, channel);

                Bitmap tempBitmap = ImageDescriptionUtil.convertToBitmap(temp);
                Bitmap output     = ImageDescriptionUtil.resizeImage(tempBitmap, newSizeX, newSizeY);
                temp = ImageDescriptionUtil.fromBitmap(output);
                temp.computeGrayscale();
                outputImage.setColorChannel(colorChannel, temp.gray);
            }

            if (colorChannelsToFilter.Count == 1 && colorChannelsToFilter.Contains(ColorChannelEnum.Gray))
            {
                outputImage.grayscale = true;
            }
            return(outputImage);
        }
Ejemplo n.º 3
0
        public void trainWithBaseAlgorithm(EdgeDetectionAlgorithm algorithm, EdgeDetectionAlgorithm baseAlgorithm, int resizeFactor)
        {
            DateTime      trainingStart = DateTime.Now;
            float         totalLoss     = 0;
            List <String> fileList      = new List <string>(benchmark.getTrainingFilesPathList());

            int totalNumberOfFiles = numberOfTrainingSetPasses * fileList.Count;
            int totalIndex         = 0;

            for (int pass = 0; pass < numberOfTrainingSetPasses; pass++)
            {
                ListUtils.Shuffle(fileList);
                int      index             = 1;
                float    totalPassLoss     = 0;
                DateTime trainingPassStart = DateTime.Now;
                foreach (string trainingFileName in fileList)
                {
                    DateTime start = DateTime.Now;

                    Console.WriteLine("Pass: "******"/" + numberOfTrainingSetPasses + ", " + index + "/" + fileList.Count + " Training file: " + Path.GetFileName(trainingFileName));
                    ImageDescription inputImage    = ImageFileHandler.loadFromPath(trainingFileName);
                    ImageDescription computedImage = baseAlgorithm.test(inputImage);

                    ResizeFilter     resizeColor   = new ResizeFilter(inputImage.sizeX / resizeFactor, inputImage.sizeY / resizeFactor, ImageDescriptionUtil.colorChannels);
                    ImageDescription newInputImage = resizeColor.filter(inputImage);

                    ImageDescription inputImageGroundTruth = ImageFileHandler.loadFromPath(benchmark.getTrainingFileGroundTruth(trainingFileName));
                    inputImageGroundTruth.computeGrayscale();
                    ResizeFilter     resizeGrayscale          = new ResizeFilter(inputImage.sizeX / resizeFactor, inputImage.sizeY / resizeFactor, ImageDescriptionUtil.grayscaleChannel);
                    ImageDescription newInputImageGroundTruth = resizeGrayscale.filter(inputImageGroundTruth);

                    ImageDescription resizedComputed = resizeGrayscale.filter(computedImage);
                    newInputImage.setColorChannel(ColorChannelEnum.Layer, resizedComputed.gray);

                    float loss = algorithm.train(newInputImage, newInputImageGroundTruth);
                    totalLoss     += loss;
                    totalPassLoss += loss;
                    index++;
                    totalIndex++;

                    double timeElapsed      = (DateTime.Now - start).TotalSeconds;
                    double timeElapsedSoFar = (DateTime.Now - trainingStart).TotalSeconds;
                    double estimatedTime    = (timeElapsedSoFar / totalIndex) * (totalNumberOfFiles - totalIndex);
                    Console.WriteLine("Loss: " + loss.ToString("0.00") + " Time: " + timeElapsed.ToString("0.00") + "s Time elapsed: "
                                      + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s");
                }
                double tariningPassTimeElapsed = (DateTime.Now - trainingPassStart).TotalSeconds;
                Console.WriteLine("Pass took " + tariningPassTimeElapsed.ToString("0.00") + " sec. Pass loss: " + totalPassLoss.ToString("0.00")
                                  + " Avg loss: " + (totalPassLoss / (fileList.Count)).ToString("0.00"));
            }
            double totalTimeElapsed = (DateTime.Now - trainingStart).TotalSeconds;

            Console.WriteLine("Training took " + totalTimeElapsed.ToString("0.00") + " sec. Total loss: " + totalLoss.ToString("0.00")
                              + " Avg loss: " + (totalLoss / (totalNumberOfFiles)).ToString("0.00"));
        }
        public ImageDescription filter(ImageDescription inputImage)
        {
            ImageDescription outputImage = new ImageDescription();

            outputImage.sizeX = inputImage.sizeX;
            outputImage.sizeY = inputImage.sizeY;
            if (colorChannelsToFilter.Count == 1 && colorChannelsToFilter.Contains(ColorChannelEnum.Gray))
            {
                outputImage.grayscale = true;
            }

            foreach (ColorChannelEnum channelEnum in colorChannelsToFilter)
            {
                byte[,] inputChannel  = inputImage.getColorChannel(channelEnum);
                byte[,] outputChannel = new byte[outputImage.sizeY, outputImage.sizeX];
                outputImage.setColorChannel(channelEnum, outputChannel);

                for (int y = 0; y < inputImage.sizeY; y++)
                {
                    for (int x = 0; x < inputImage.sizeX; x++)
                    {
                        int index = 0;
                        for (int i = -halfSize; i <= halfSize; i++)
                        {
                            for (int j = -halfSize; j <= halfSize; j++)
                            {
                                medianValueArray[index++] = inputChannel[ImageDescriptionUtil.outsideMirroredPosition(y + i, inputImage.sizeY), ImageDescriptionUtil.outsideMirroredPosition(x + j, inputImage.sizeX)];
                            }
                        }
                        Array.Sort(medianValueArray);
                        outputChannel[y, x] = medianValueArray[medianPosition];
                    }
                }
            }

            return(outputImage);
        }
Ejemplo n.º 5
0
        public void trainNestedAlgorithm(ContextualMemoryNestedAlgorithm nestedAlgorithm)
        {
            BlackAndWhiteConverter blackAndWhiteConverter = new BlackAndWhiteConverter(1);
            //BlackAndWhiteConverter blackAndWhiteConverter = new BlackAndWhiteConverter(63);

            List <String> fileList = new List <string>(benchmark.getTrainingFilesPathList());

            List <ContextualMemoryNestedAlgorithmLayer> layers = nestedAlgorithm.getLayers();

            for (int layerIndex = 0; layerIndex < layers.Count; layerIndex++)
            {
                ContextualMemoryNestedAlgorithmLayer layer = layers[layerIndex];
                layer.initialize();
                Console.WriteLine("Layer: " + (layerIndex + 1) + "/" + layers.Count);

                EdgeDetectionAlgorithm algorithm = layer.algorithm;

                DateTime trainingStart      = DateTime.Now;
                float    totalLoss          = 0;
                int      totalNumberOfFiles = numberOfTrainingSetPasses * fileList.Count;
                int      totalIndex         = 0;
                for (int pass = 0; pass < numberOfTrainingSetPasses; pass++)
                {
                    ListUtils.Shuffle(fileList);
                    int      index             = 1;
                    float    totalPassLoss     = 0;
                    DateTime trainingPassStart = DateTime.Now;
                    foreach (string trainingFileName in fileList)
                    {
                        DateTime start = DateTime.Now;
                        Console.WriteLine("Pass: "******"/" + numberOfTrainingSetPasses + ", " + index + "/" + fileList.Count + " Training file: " + Path.GetFileName(trainingFileName));

                        ImageDescription inputImage = ImageFileHandler.loadFromPath(trainingFileName);
                        int layerResizeFactor       = layer.resizeFactor;

                        ImageDescription computedImage = null;
                        if (layerIndex > 0)
                        {
                            List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layerIndex);
                            computedImage = computedImages[layerIndex - 1];
                        }

                        ImageDescription inputImageGroundTruth = ImageFileHandler.loadFromPath(benchmark.getTrainingFileGroundTruth(trainingFileName));
                        inputImageGroundTruth = blackAndWhiteConverter.filter(inputImageGroundTruth);

                        ImageDescription newInputImage            = null;
                        ImageDescription newInputImageGroundTruth = null;

                        ResizeFilter resizeGrayscale = new ResizeFilter(inputImage.sizeX / layerResizeFactor, inputImage.sizeY / layerResizeFactor, ImageDescriptionUtil.grayscaleChannel);
                        ResizeFilter resizeColor     = new ResizeFilter(inputImage.sizeX / layerResizeFactor, inputImage.sizeY / layerResizeFactor, ImageDescriptionUtil.colorChannels);

                        if (layerResizeFactor == 1)
                        {
                            newInputImage            = inputImage;
                            newInputImageGroundTruth = inputImageGroundTruth;
                        }
                        else
                        {
                            newInputImage            = resizeColor.filter(inputImage);
                            newInputImageGroundTruth = resizeGrayscale.filter(inputImageGroundTruth);
                        }
                        if (layerIndex > 0)
                        {
                            ImageDescription resizedComputed = resizeGrayscale.filter(computedImage);
                            newInputImage.setColorChannel(ColorChannelEnum.Layer, resizedComputed.gray);
                        }

                        float loss = algorithm.train(newInputImage, newInputImageGroundTruth);

                        totalLoss     += loss;
                        totalPassLoss += loss;
                        index++;
                        totalIndex++;

                        double timeElapsed      = (DateTime.Now - start).TotalSeconds;
                        double timeElapsedSoFar = (DateTime.Now - trainingStart).TotalSeconds;
                        double estimatedTime    = (timeElapsedSoFar / totalIndex) * (totalNumberOfFiles - totalIndex);
                        Console.WriteLine("Loss: " + loss.ToString("0.00") + " Time: " + timeElapsed.ToString("0.00") + "s Time elapsed: "
                                          + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s");
                    }
                    double tariningPassTimeElapsed = (DateTime.Now - trainingPassStart).TotalSeconds;
                    Console.WriteLine("Pass took " + tariningPassTimeElapsed.ToString("0.00") + " sec. Pass loss: " + totalPassLoss.ToString("0.00")
                                      + " Avg loss: " + (totalPassLoss / (fileList.Count)).ToString("0.00"));
                }
                double totalTimeElapsed = (DateTime.Now - trainingStart).TotalSeconds;
                Console.WriteLine("Training took " + totalTimeElapsed.ToString("0.00") + " sec. Total loss: " + totalLoss.ToString("0.00")
                                  + " Avg loss: " + (totalLoss / (totalNumberOfFiles)).ToString("0.00"));
            }

            Console.WriteLine("Training blender");

            DateTime     blenderTrainingStart      = DateTime.Now;
            float        blenderTotalLoss          = 0;
            int          blenderTotalNumberOfFiles = /* numberOfTrainingSetPasses * */ fileList.Count;
            int          blenderTotalIndex         = 0;
            ImageBlender blender = nestedAlgorithm.getImageBlender();
            //for (int pass = 0; pass < numberOfTrainingSetPasses; pass++)
            {
                ListUtils.Shuffle(fileList);
                int      index             = 1;
                float    totalPassLoss     = 0;
                DateTime trainingPassStart = DateTime.Now;
                foreach (string trainingFileName in fileList)
                {
                    DateTime start = DateTime.Now;
                    //Console.Write("Pass: "******"/" + numberOfTrainingSetPasses + ", ");
                    Console.WriteLine(index + "/" + fileList.Count + " Training file: " + Path.GetFileName(trainingFileName));

                    ImageDescription        inputImage     = ImageFileHandler.loadFromPath(trainingFileName);
                    List <ImageDescription> computedImages = nestedAlgorithm.computeImageForLayers(inputImage, layers.Count);

                    ImageDescription inputImageGroundTruth = ImageFileHandler.loadFromPath(benchmark.getTrainingFileGroundTruth(trainingFileName));
                    inputImageGroundTruth = blackAndWhiteConverter.filter(inputImageGroundTruth);

                    float blenderLoss = blender.train(computedImages, inputImageGroundTruth);

                    blenderTotalLoss += blenderLoss;
                    totalPassLoss    += blenderLoss;
                    index++;
                    blenderTotalIndex++;

                    double timeElapsed      = (DateTime.Now - start).TotalSeconds;
                    double timeElapsedSoFar = (DateTime.Now - blenderTrainingStart).TotalSeconds;
                    double estimatedTime    = (timeElapsedSoFar / blenderTotalIndex) * (blenderTotalNumberOfFiles - blenderTotalIndex);
                    Console.WriteLine("Loss: " + blenderLoss.ToString("0.00") + " Time: " + timeElapsed.ToString("0.00") + "s Time elapsed: "
                                      + timeElapsedSoFar.ToString("0.00") + "s ETA: " + estimatedTime.ToString("0.00") + "s");
                }
                //double tariningPassTimeElapsed = (DateTime.Now - trainingPassStart).TotalSeconds;
                //Console.WriteLine("Pass took " + tariningPassTimeElapsed.ToString("0.00") + " sec. Pass loss: " + totalPassLoss.ToString("0.00")
                //+ " Avg loss: " + (totalPassLoss / (fileList.Count)).ToString("0.00"));
            }
            double blenderTotalTimeElapsed = (DateTime.Now - blenderTrainingStart).TotalSeconds;

            Console.WriteLine("Training took " + blenderTotalTimeElapsed.ToString("0.00") + " sec. Total loss: " + blenderTotalLoss.ToString("0.00")
                              + " Avg loss: " + (blenderTotalLoss / (blenderTotalNumberOfFiles)).ToString("0.00"));
        }
Ejemplo n.º 6
0
        public virtual ImageDescription filter(ImageDescription inputImage)
        {
            inputImage.computeGrayscale();

            int imageSizeX = inputImage.sizeX;
            int imageSizeY = inputImage.sizeY;

            byte[,] inputGray  = inputImage.gray;
            byte[,] outputGray = new byte[imageSizeY, imageSizeX];

            float[,] gaussConvolutionMatrix = FilterBankUtil.generateNormalizedGaussConvolutionMatrix(sigma, 7);
            float[,] gaussResult            = ImageDescriptionUtil.mirroredMarginConvolution(inputGray, gaussConvolutionMatrix);

            List <float[, ]> templates = FilterBankUtil.normalizedKirschTemplates;
            List <float[, ]> results   = new List <float[, ]>(templates.Count);

            foreach (float[,] template in templates)
            {
                results.Add(ImageDescriptionUtil.mirroredMarginConvolution(gaussResult, template));
            }

            float[,] amplitudeResult = new float[imageSizeY, imageSizeX];
            int[,] anglesResult      = new int[imageSizeY, imageSizeX];
            for (int i = 0; i < imageSizeY; i++)
            {
                for (int j = 0; j < imageSizeX; j++)
                {
                    int   direction = 0;
                    float maxValue  = 0;
                    for (int templateIndex = 0; templateIndex < templates.Count; templateIndex++)
                    {
                        float value = results[templateIndex][i, j];
                        if (value > maxValue)
                        {
                            maxValue  = value;
                            direction = templateIndex;
                        }
                    }
                    amplitudeResult[i, j] = maxValue;
                    anglesResult[i, j]    = direction;
                }
            }

            if (!applyNms)
            {
                for (var i = 0; i < imageSizeY; i++)
                {
                    for (var j = 0; j < imageSizeX; j++)
                    {
                        if (amplitudeResult[i, j] < 255)
                        {
                            outputGray[i, j] = (byte)(amplitudeResult[i, j] + 0.5f);
                        }
                        else
                        {
                            outputGray[i, j] = 255;
                        }
                    }
                }
            }
            else
            {
                float[,] nmsResult = new float[imageSizeY, imageSizeX];
                for (int i = 0; i < imageSizeY; i++)
                {
                    for (int j = 0; j < imageSizeX; j++)
                    {
                        int angle = anglesResult[i, j];
                        if (angle == 2 || angle == 6)
                        {
                            if ((i == 0 || amplitudeResult[i, j] >= amplitudeResult[i - 1, j]) &&
                                (i == imageSizeY - 1 || amplitudeResult[i, j] > amplitudeResult[i + 1, j]))
                            {
                                nmsResult[i, j] = amplitudeResult[i, j];
                            }
                        }
                        else
                        {
                            if (angle == 1 || angle == 5)
                            {
                                if ((i == 0 || j == imageSizeX - 1 || amplitudeResult[i, j] >= amplitudeResult[i - 1, j + 1]) &&
                                    (i == imageSizeY - 1 || j == 0 || amplitudeResult[i, j] > amplitudeResult[i + 1, j - 1]))
                                {
                                    nmsResult[i, j] = amplitudeResult[i, j];
                                }
                            }
                            else
                            {
                                if (angle == 3 || angle == 7)
                                {
                                    if ((i == 0 || j == 0 || amplitudeResult[i, j] >= amplitudeResult[i - 1, j - 1]) &&
                                        (i == imageSizeY - 1 || j == imageSizeX - 1 || amplitudeResult[i, j] > amplitudeResult[i + 1, j + 1]))
                                    {
                                        nmsResult[i, j] = amplitudeResult[i, j];
                                    }
                                }
                                else
                                {
                                    if ((j == 0 || amplitudeResult[i, j] >= amplitudeResult[i, j - 1]) &&
                                        (j == imageSizeX - 1 || amplitudeResult[i, j] > amplitudeResult[i, j + 1]))
                                    {
                                        nmsResult[i, j] = amplitudeResult[i, j];
                                    }
                                }
                            }
                        }
                    }
                }

                float[,] hysteresisResult = new float[imageSizeY, imageSizeX];
                bool[,] retainedPositions = applyHysteresisThreshold(nmsResult, imageSizeX, imageSizeY);

                for (var i = 0; i < imageSizeY; i++)
                {
                    for (var j = 0; j < imageSizeX; j++)
                    {
                        if (retainedPositions[i, j])
                        {
                            hysteresisResult[i, j] = nmsResult[i, j];
                        }
                    }
                }

                for (var i = 0; i < imageSizeY; i++)
                {
                    for (var j = 0; j < imageSizeX; j++)
                    {
                        if (hysteresisResult[i, j] < 255)
                        {
                            outputGray[i, j] = (byte)(hysteresisResult[i, j] + 0.5f);
                        }
                        else
                        {
                            outputGray[i, j] = 255;
                        }
                    }
                }
            }

            ImageDescription outputImage = new ImageDescription();

            outputImage.sizeX = imageSizeX;
            outputImage.sizeY = imageSizeY;
            foreach (ColorChannelEnum colorChannel in Enum.GetValues(typeof(ColorChannelEnum)))
            {
                outputImage.setColorChannel(colorChannel, inputImage.getColorChannel(colorChannel));
            }
            outputImage.setColorChannel(ColorChannelEnum.Kirsch, outputGray);

            return(outputImage);
        }
Ejemplo n.º 7
0
        public virtual ImageDescription filter(ImageDescription inputImage)
        {
            inputImage.computeGrayscale();

            int imageSizeX = inputImage.sizeX;
            int imageSizeY = inputImage.sizeY;

            byte[,] inputGray  = inputImage.gray;
            byte[,] outputGray = new byte[imageSizeY, imageSizeX];

            // 1. Gauss
            float[,] gaussConvolutionMatrix = FilterBankUtil.generateNormalizedGaussConvolutionMatrix(sigma, 5);
            float[,] gaussResult            = ImageDescriptionUtil.mirroredMarginConvolution(inputGray, gaussConvolutionMatrix);

            // 2. Gradient
            float[,] dx = ImageDescriptionUtil.mirroredMarginConvolution(gaussResult, FilterBankUtil.normalizedSobelX);
            float[,] dy = ImageDescriptionUtil.mirroredMarginConvolution(gaussResult, FilterBankUtil.normalizedSobelY);

            // 3. Gradient Amplitude
            float[,] amplitudeResult = new float[imageSizeY, imageSizeX];
            for (int i = 0; i < imageSizeY; i++)
            {
                for (int j = 0; j < imageSizeX; j++)
                {
                    amplitudeResult[i, j] = (float)Math.Sqrt(dx[i, j] * dx[i, j] + dy[i, j] * dy[i, j]);
                }
            }

            // 4. Angle of gradient
            float[,] anglesResult = new float[imageSizeY, imageSizeX];
            for (int i = 0; i < imageSizeY; i++)
            {
                for (int j = 0; j < imageSizeX; j++)
                {
                    anglesResult[i, j] = (float)Math.Atan2(dx[i, j], dy[i, j]);
                }
            }

            // 5. Non maximal suppresion
            float[,] nmsResult = new float[imageSizeY, imageSizeX];
            for (int i = 1; i < imageSizeY - 1; i++)
            {
                for (int j = 1; j < imageSizeX - 1; j++)
                {
                    float angle = anglesResult[i, j];
                    if ((angle <= (5 * Math.PI) / 8 && angle > (3 * Math.PI) / 8) || (angle > -(5 * Math.PI) / 8 && angle <= -(3 * Math.PI) / 8))
                    {
                        if (amplitudeResult[i, j] > amplitudeResult[i - 1, j] && amplitudeResult[i, j] > amplitudeResult[i + 1, j])
                        {
                            nmsResult[i, j] = amplitudeResult[i, j];
                        }
                    }
                    else
                    {
                        if (angle <= (3 * Math.PI) / 8 && angle > Math.PI / 8 || angle > -(7 * Math.PI) / 8 && angle <= -(5 * Math.PI) / 8)
                        {
                            if (amplitudeResult[i, j] > amplitudeResult[i - 1, j + 1] && amplitudeResult[i, j] > amplitudeResult[i + 1, j - 1])
                            {
                                nmsResult[i, j] = amplitudeResult[i, j];
                            }
                        }
                        else
                        {
                            if (angle <= (7 * Math.PI / 8) && angle > (5 * Math.PI / 8) || angle > -(3 * Math.PI) / 8 && angle < -(Math.PI / 8))
                            {
                                if (amplitudeResult[i, j] > amplitudeResult[i - 1, j - 1] && amplitudeResult[i, j] > amplitudeResult[i + 1, j + 1])
                                {
                                    nmsResult[i, j] = amplitudeResult[i, j];
                                }
                            }
                            else
                            {
                                if (amplitudeResult[i, j] > amplitudeResult[i, j - 1] && amplitudeResult[i, j] > amplitudeResult[i, j + 1])
                                {
                                    nmsResult[i, j] = amplitudeResult[i, j];
                                }
                            }
                        }
                    }
                }
            }

            // 6. Hysteresis thresolding
            float[,] hysteresisResult = new float[imageSizeY, imageSizeX];
            bool[,] retainedPositions = applyHysteresisThreshold(nmsResult, imageSizeX, imageSizeY);

            for (var i = 0; i < imageSizeY; i++)
            {
                for (var j = 0; j < imageSizeX; j++)
                {
                    if (retainedPositions[i, j])
                    {
                        hysteresisResult[i, j] = nmsResult[i, j];
                    }
                }
            }

            for (var i = 0; i < imageSizeY; i++)
            {
                for (var j = 0; j < imageSizeX; j++)
                {
                    if (hysteresisResult[i, j] < 255)
                    {
                        outputGray[i, j] = (byte)(hysteresisResult[i, j] + 0.5f);
                    }
                    else
                    {
                        outputGray[i, j] = 255;
                    }
                }
            }

            ImageDescription outputImage = new ImageDescription();

            outputImage.sizeX = imageSizeX;
            outputImage.sizeY = imageSizeY;
            foreach (ColorChannelEnum colorChannel in Enum.GetValues(typeof(ColorChannelEnum)))
            {
                outputImage.setColorChannel(colorChannel, inputImage.getColorChannel(colorChannel));
            }
            outputImage.setColorChannel(ColorChannelEnum.Canny, outputGray);

            return(outputImage);
        }