public static void ValidateMappingDifferential(IStochasticMapping mapping, IManifoldPoint point, double eps, double tolerance)
        {
            var dim   = mapping.Domain.Dimension;
            var codim = mapping.Codomain.Dimension;

            var expectedDifferential = new Matrix(codim, dim);

            for (int i = 0; i < dim; i++)
            {
                var advancedPoint = mapping.Domain.Translate(point, +eps * Vector.Basis(i, dim));
                var retardedPoint = mapping.Domain.Translate(point, -eps * Vector.Basis(i, dim));

                var advancedImage = mapping.Apply(advancedPoint).Expectation;
                var retardedImage = mapping.Apply(retardedPoint).Expectation;

                var gradient = mapping.Codomain.GetTranslation(advancedImage, retardedImage) / (2 * eps);

                expectedDifferential.SetColumn(i, gradient);
            }

            var actualDifferential = mapping.ExpectationDifferential(point);

            Assert.That((expectedDifferential - actualDifferential).FrobeniusNorm(), Is.LessThan(tolerance));
        }
Ejemplo n.º 2
0
        // predict + update
        public void Update(IStochasticMapping measurementModel, IManifoldPoint measurement, double time)
        {
            ArgAssert.NotNull(measurementModel, "measurementModel");
            ArgAssert.Equal(measurementModel.Domain.Dimension, "measurementModel.Domain.Dimension", _estimate.Dimension, "_estimate.Dimension");
            ArgAssert.Equal(measurementModel.Codomain.Dimension, "measurementModel.Codomain.Dimension", measurement.Dimension, "measurement.Dimension");

            Predict(time);

            var measDiff            = measurementModel.ExpectationDifferential(_estimate.Expectation);
            var expectedMeasurement = measurementModel.Apply(_estimate.Expectation);

            var gain = _estimate.Covariance * measDiff.Transposed() * (_estimate.Covariance.Conjugate(measDiff) + expectedMeasurement.Covariance).Inv();

            var error = measurementModel.Codomain.GetTranslation(measurement, expectedMeasurement.Expectation);
            var updatedExpectation = _processModel.StateSpace.Translate(_estimate.Expectation, gain * error);

            var kh = (gain * measDiff).AsSquare();
            var updatedCovariance = ((kh.Id() - kh) * _estimate.Covariance).AsSymmetric();

            _estimate = new StochasticManifoldPoint(updatedExpectation, updatedCovariance);
        }