Ejemplo n.º 1
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="g">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side. In training mode, it inputs target tokens, otherwise, it outputs target tokens generated by decoder</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph g, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            List <NetworkResult> nrs = new List <NetworkResult>();

            var srcSnts = sntPairBatch.GetSrcTokens(0);
            var tgtSnts = sntPairBatch.GetTgtTokens(0);

            (IEncoder encoder, IWeightTensor srcEmbedding, IWeightTensor posEmbedding, FeedForwardLayer decoderFFLayer) = GetNetworksOnDeviceAt(deviceIdIdx);

            // Reset networks
            encoder.Reset(g.GetWeightFactory(), srcSnts.Count);

            var originalSrcLengths = BuildInTokens.PadSentences(srcSnts);
            var srcTokensList      = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts);

            BuildInTokens.PadSentences(tgtSnts);
            var tgtTokensLists = m_modelMetaData.ClsVocab.GetWordIndex(tgtSnts);

            int seqLen    = srcSnts[0].Count;
            int batchSize = srcSnts.Count;

            // Encoding input source sentences
            IWeightTensor encOutput = Encoder.Run(g, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, null, srcTokensList, originalSrcLengths);
            IWeightTensor ffLayer   = decoderFFLayer.Process(encOutput, batchSize, g);

            float         cost  = 0.0f;
            IWeightTensor probs = g.Softmax(ffLayer, inPlace: true);

            if (isTraining)
            {
                var tgtTokensTensor = g.CreateTokensTensor(tgtTokensLists);
                cost = g.CrossEntropyLoss(probs, tgtTokensTensor);
            }
            else
            {
                // Output "i"th target word
                using var targetIdxTensor = g.Argmax(probs, 1);
                float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());

                for (int k = 0; k < batchSize; k++)
                {
                    tgtSnts[k] = targetWords.GetRange(k * seqLen, seqLen);
                }
            }

            NetworkResult nr = new NetworkResult
            {
                Cost   = cost,
                Output = new List <List <List <string> > >()
            };

            nr.Output.Add(tgtSnts);

            nrs.Add(nr);

            return(nrs);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="g">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side. In training mode, it inputs target tokens, otherwise, it outputs target tokens generated by decoder</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        private float RunForwardOnSingleDevice(IComputeGraph g, List <List <string> > srcSnts, List <List <string> > tgtSnts, int deviceIdIdx, bool isTraining)
        {
            (IEncoder encoder, IWeightTensor srcEmbedding, FeedForwardLayer decoderFFLayer) = GetNetworksOnDeviceAt(deviceIdIdx);
            int batchSize = srcSnts.Count;

            // Reset networks
            encoder.Reset(g.GetWeightFactory(), batchSize);

            // Encoding input source sentences
            ParallelCorpus.PadSentences(srcSnts);

            if (isTraining)
            {
                ParallelCorpus.PadSentences(tgtSnts);

                if (srcSnts[0].Count != tgtSnts[0].Count)
                {
                    throw new ArgumentException($"The length of source side and target side must be equal. source length = '{srcSnts[0].Count}', target length = '{tgtSnts[0].Count}'");
                }
            }
            int seqLen = srcSnts[0].Count;

            IWeightTensor encodedWeightMatrix = Encode(g.CreateSubGraph("Encoder"), srcSnts, encoder, srcEmbedding);
            IWeightTensor ffLayer             = decoderFFLayer.Process(encodedWeightMatrix, batchSize, g);

            IWeightTensor ffLayerBatch = g.TransposeBatch(ffLayer, batchSize);

            //    Logger.WriteLine("1");

            float cost = 0.0f;

            using (var probs = g.Softmax(ffLayerBatch, runGradients: false, inPlace: true))
            {
                if (isTraining)
                {
                    //Calculate loss for each word in the batch
                    for (int k = 0; k < batchSize; k++)
                    {
                        for (int j = 0; j < seqLen; j++)
                        {
                            using (var probs_k_j = g.PeekRow(probs, k * seqLen + j, runGradients: false))
                            {
                                var ix_targets_k_j = m_modelMetaData.Vocab.GetTargetWordIndex(tgtSnts[k][j]);
                                var score_k        = probs_k_j.GetWeightAt(ix_targets_k_j);
                                cost += (float)-Math.Log(score_k);

                                probs_k_j.SetWeightAt(score_k - 1, ix_targets_k_j);
                            }
                        }

                        ////CRF part
                        //using (var probs_k = g.PeekRow(probs, k * seqLen, seqLen, runGradients: false))
                        //{
                        //    var weights_k = probs_k.ToWeightArray();
                        //    var crfOutput_k = m_crfDecoder.ForwardBackward(seqLen, weights_k);

                        //    int[] trueTags = new int[seqLen];
                        //    for (int j = 0; j < seqLen; j++)
                        //    {
                        //        trueTags[j] = m_modelMetaData.Vocab.GetTargetWordIndex(tgtSnts[k][j]);
                        //    }
                        //    m_crfDecoder.UpdateBigramTransition(seqLen, crfOutput_k, trueTags);
                        //}
                    }

                    ffLayerBatch.CopyWeightsToGradients(probs);
                }
                else
                {
                    // CRF decoder
                    //for (int k = 0; k < batchSize; k++)
                    //{
                    //    //CRF part
                    //    using (var probs_k = g.PeekRow(probs, k * seqLen, seqLen, runGradients: false))
                    //    {
                    //        var weights_k = probs_k.ToWeightArray();

                    //        var crfOutput_k = m_crfDecoder.DecodeNBestCRF(weights_k, seqLen, 1);
                    //        var targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(crfOutput_k[0].ToList());
                    //        tgtSnts.Add(targetWords);
                    //    }
                    //}


                    // Output "i"th target word
                    var targetIdx   = g.Argmax(probs, 1);
                    var targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());

                    for (int k = 0; k < batchSize; k++)
                    {
                        tgtSnts.Add(targetWords.GetRange(k * seqLen, seqLen));
                    }
                }
            }

            return(cost);
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Decode output sentences in training
        /// </summary>
        /// <param name="outputSnts">In training mode, they are golden target sentences, otherwise, they are target sentences generated by the decoder</param>
        /// <param name="g"></param>
        /// <param name="encOutputs"></param>
        /// <param name="decoder"></param>
        /// <param name="decoderFFLayer"></param>
        /// <param name="tgtEmbedding"></param>
        /// <returns></returns>
        private float DecodeAttentionLSTM(List <List <string> > outputSnts, IComputeGraph g, IWeightTensor encOutputs, AttentionDecoder decoder, IWeightTensor tgtEmbedding, int batchSize, bool isTraining = true)
        {
            float cost = 0.0f;

            int[] ix_inputs = new int[batchSize];
            for (int i = 0; i < ix_inputs.Length; i++)
            {
                ix_inputs[i] = m_modelMetaData.Vocab.GetTargetWordIndex(outputSnts[i][0]);
            }

            // Initialize variables accoridng to current mode
            List <int>    originalOutputLengths = isTraining ? ParallelCorpus.PadSentences(outputSnts) : null;
            int           seqLen       = isTraining ? outputSnts[0].Count : 64;
            float         dropoutRatio = isTraining ? m_dropoutRatio : 0.0f;
            HashSet <int> setEndSentId = isTraining ? null : new HashSet <int>();

            // Pre-process for attention model
            AttentionPreProcessResult attPreProcessResult = decoder.PreProcess(encOutputs, batchSize, g);

            for (int i = 1; i < seqLen; i++)
            {
                //Get embedding for all sentence in the batch at position i
                List <IWeightTensor> inputs = new List <IWeightTensor>();
                for (int j = 0; j < batchSize; j++)
                {
                    inputs.Add(g.PeekRow(tgtEmbedding, ix_inputs[j]));
                }
                IWeightTensor inputsM = g.ConcatRows(inputs);

                //Decode output sentence at position i
                IWeightTensor eOutput = decoder.Decode(inputsM, attPreProcessResult, batchSize, g);

                //Softmax for output
                using (IWeightTensor probs = g.Softmax(eOutput, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        //Calculate loss for each word in the batch
                        for (int k = 0; k < batchSize; k++)
                        {
                            using (IWeightTensor probs_k = g.PeekRow(probs, k, runGradients: false))
                            {
                                int   ix_targets_k = m_modelMetaData.Vocab.GetTargetWordIndex(outputSnts[k][i]);
                                float score_k      = probs_k.GetWeightAt(ix_targets_k);
                                if (i < originalOutputLengths[k])
                                {
                                    cost += (float)-Math.Log(score_k);
                                }

                                probs_k.SetWeightAt(score_k - 1, ix_targets_k);
                                ix_inputs[k] = ix_targets_k;
                            }
                        }
                        eOutput.CopyWeightsToGradients(probs);
                    }
                    else
                    {
                        // Output "i"th target word
                        int[]         targetIdx   = g.Argmax(probs, 1);
                        List <string> targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());
                        for (int j = 0; j < targetWords.Count; j++)
                        {
                            if (setEndSentId.Contains(j) == false)
                            {
                                outputSnts[j].Add(targetWords[j]);

                                if (targetWords[j] == ParallelCorpus.EOS)
                                {
                                    setEndSentId.Add(j);
                                }
                            }
                        }

                        if (setEndSentId.Count == batchSize)
                        {
                            // All target sentences in current batch are finished, so we exit.
                            break;
                        }

                        ix_inputs = targetIdx;
                    }
                }
            }

            return(cost);
        }
Ejemplo n.º 4
0
        private float DecodeTransformer(List <List <string> > outInputSeqs, IComputeGraph g, IWeightTensor encOutputs, IWeightTensor encMask, TransformerDecoder decoder,
                                        IWeightTensor tgtEmbedding, int batchSize, int deviceId, bool isTraining = true)
        {
            float cost = 0.0f;

            var originalInputLengths = ParallelCorpus.PadSentences(outInputSeqs);
            int tgtSeqLen            = outInputSeqs[0].Count;

            IWeightTensor tgtDimMask = MaskUtils.BuildPadDimMask(g, tgtSeqLen, originalInputLengths, m_modelMetaData.HiddenDim, deviceId);

            using (IWeightTensor tgtSelfTriMask = MaskUtils.BuildPadSelfTriMask(g, tgtSeqLen, originalInputLengths, deviceId))
            {
                List <IWeightTensor> inputs = new List <IWeightTensor>();
                for (int i = 0; i < batchSize; i++)
                {
                    for (int j = 0; j < tgtSeqLen; j++)
                    {
                        int ix_targets_k = m_modelMetaData.Vocab.GetTargetWordIndex(outInputSeqs[i][j], logUnk: true);
                        inputs.Add(g.PeekRow(tgtEmbedding, ix_targets_k));
                    }
                }

                IWeightTensor tgtInputEmbeddings = inputs.Count > 1 ? g.ConcatRows(inputs) : inputs[0];
                IWeightTensor decOutput          = decoder.Decode(tgtInputEmbeddings, encOutputs, tgtSelfTriMask, encMask, tgtDimMask, batchSize, g);

                decOutput = g.Mul(decOutput, g.Transpose(tgtEmbedding));

                using (IWeightTensor probs = g.Softmax(decOutput, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var leftShiftInputSeqs    = ParallelCorpus.LeftShiftSnts(outInputSeqs, ParallelCorpus.EOS);
                        var originalOutputLengths = ParallelCorpus.PadSentences(leftShiftInputSeqs, tgtSeqLen);

                        for (int i = 0; i < batchSize; i++)
                        {
                            for (int j = 0; j < tgtSeqLen; j++)
                            {
                                using (IWeightTensor probs_i_j = g.PeekRow(probs, i * tgtSeqLen + j, runGradients: false))
                                {
                                    if (j < originalOutputLengths[i])
                                    {
                                        int   ix_targets_i_j = m_modelMetaData.Vocab.GetTargetWordIndex(leftShiftInputSeqs[i][j], logUnk: true);
                                        float score_i_j      = probs_i_j.GetWeightAt(ix_targets_i_j);
                                        if (j < originalOutputLengths[i])
                                        {
                                            cost += (float)-Math.Log(score_i_j);
                                        }

                                        probs_i_j.SetWeightAt(score_i_j - 1, ix_targets_i_j);
                                    }
                                    else
                                    {
                                        probs_i_j.CleanWeight();
                                    }
                                }
                            }
                        }

                        decOutput.CopyWeightsToGradients(probs);
                    }
                    else
                    {
                        // Output "i"th target word
                        int[]         targetIdx   = g.Argmax(probs, 1);
                        List <string> targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());

                        for (int i = 0; i < batchSize; i++)
                        {
                            outInputSeqs[i].Add(targetWords[i * tgtSeqLen + tgtSeqLen - 1]);
                        }
                    }
                }
            }


            return(cost);
        }
Ejemplo n.º 5
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="g">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side. In training mode, it inputs target tokens, otherwise, it outputs target tokens generated by decoder</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        private float RunForwardOnSingleDevice(IComputeGraph g, List <List <string> > srcSnts, List <List <string> > tgtSnts, int deviceIdIdx, bool isTraining)
        {
            var(encoder, srcEmbedding, posEmbedding, decoderFFLayer) = this.GetNetworksOnDeviceAt(deviceIdIdx);

            // Reset networks
            encoder.Reset(g.GetWeightFactory(), srcSnts.Count);


            var originalSrcLengths = ParallelCorpus.PadSentences(srcSnts);
            var seqLen             = srcSnts[0].Count;
            var batchSize          = srcSnts.Count;

            // Encoding input source sentences
            var encOutput    = this.Encode(g, srcSnts, encoder, srcEmbedding, null, posEmbedding, originalSrcLengths);
            var ffLayer      = decoderFFLayer.Process(encOutput, batchSize, g);
            var ffLayerBatch = g.TransposeBatch(ffLayer, batchSize);

            var cost = 0.0f;

            using (var probs = g.Softmax(ffLayerBatch, runGradients: false, inPlace: true))
            {
                if (isTraining)
                {
                    //Calculate loss for each word in the batch
                    for (var k = 0; k < batchSize; k++)
                    {
                        for (var j = 0; j < seqLen; j++)
                        {
                            using (var probs_k_j = g.PeekRow(probs, k * seqLen + j, runGradients: false))
                            {
                                var ix_targets_k_j = this.m_modelMetaData.Vocab.GetTargetWordIndex(tgtSnts[k][j]);
                                var score_k        = probs_k_j.GetWeightAt(ix_targets_k_j);
                                cost += (float)-Math.Log(score_k);

                                probs_k_j.SetWeightAt(score_k - 1, ix_targets_k_j);
                            }
                        }

                        ////CRF part
                        //using (var probs_k = g.PeekRow(probs, k * seqLen, seqLen, runGradients: false))
                        //{
                        //    var weights_k = probs_k.ToWeightArray();
                        //    var crfOutput_k = m_crfDecoder.ForwardBackward(seqLen, weights_k);

                        //    int[] trueTags = new int[seqLen];
                        //    for (int j = 0; j < seqLen; j++)
                        //    {
                        //        trueTags[j] = m_modelMetaData.Vocab.GetTargetWordIndex(tgtSnts[k][j]);
                        //    }
                        //    m_crfDecoder.UpdateBigramTransition(seqLen, crfOutput_k, trueTags);
                        //}
                    }

                    ffLayerBatch.CopyWeightsToGradients(probs);
                }
                else
                {
                    // CRF decoder
                    //for (int k = 0; k < batchSize; k++)
                    //{
                    //    //CRF part
                    //    using (var probs_k = g.PeekRow(probs, k * seqLen, seqLen, runGradients: false))
                    //    {
                    //        var weights_k = probs_k.ToWeightArray();

                    //        var crfOutput_k = m_crfDecoder.DecodeNBestCRF(weights_k, seqLen, 1);
                    //        var targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(crfOutput_k[0].ToList());
                    //        tgtSnts.Add(targetWords);
                    //    }
                    //}


                    // Output "i"th target word
                    var targetIdx   = g.Argmax(probs, 1);
                    var targetWords = this.m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());

                    for (var k = 0; k < batchSize; k++)
                    {
                        tgtSnts[k] = targetWords.GetRange(k * seqLen, seqLen);
                    }
                }
            }

            return(cost);
        }
Ejemplo n.º 6
0
        private float DecodeTransformer(List <List <string> > tgtSeqs, IComputeGraph g, IWeightTensor encOutputs, TransformerDecoder decoder,
                                        IWeightTensor tgtEmbedding, IWeightTensor posEmbedding, int batchSize, int deviceId, List <int> srcOriginalLenghts, bool isTraining = true)
        {
            float cost = 0.0f;

            var tgtOriginalLengths = ParallelCorpus.PadSentences(tgtSeqs);
            int tgtSeqLen          = tgtSeqs[0].Count;
            int srcSeqLen          = encOutputs.Rows / batchSize;

            using (IWeightTensor srcTgtMask = MaskUtils.BuildSrcTgtMask(g, srcSeqLen, tgtSeqLen, tgtOriginalLengths, srcOriginalLenghts, deviceId))
            {
                using (IWeightTensor tgtSelfTriMask = MaskUtils.BuildPadSelfTriMask(g, tgtSeqLen, tgtOriginalLengths, deviceId))
                {
                    List <IWeightTensor> inputs = new List <IWeightTensor>();
                    for (int i = 0; i < batchSize; i++)
                    {
                        for (int j = 0; j < tgtSeqLen; j++)
                        {
                            int ix_targets_k = m_modelMetaData.Vocab.GetTargetWordIndex(tgtSeqs[i][j], logUnk: true);

                            var emb = g.PeekRow(tgtEmbedding, ix_targets_k, runGradients: j < tgtOriginalLengths[i] ? true : false);

                            inputs.Add(emb);
                        }
                    }

                    IWeightTensor inputEmbs = inputs.Count > 1 ? g.ConcatRows(inputs) : inputs[0];

                    inputEmbs = AddPositionEmbedding(g, posEmbedding, batchSize, tgtSeqLen, inputEmbs);

                    IWeightTensor decOutput = decoder.Decode(inputEmbs, encOutputs, tgtSelfTriMask, srcTgtMask, batchSize, g);

                    using (IWeightTensor probs = g.Softmax(decOutput, runGradients: false, inPlace: true))
                    {
                        if (isTraining)
                        {
                            var leftShiftInputSeqs = ParallelCorpus.LeftShiftSnts(tgtSeqs, ParallelCorpus.EOS);
                            for (int i = 0; i < batchSize; i++)
                            {
                                for (int j = 0; j < tgtSeqLen; j++)
                                {
                                    using (IWeightTensor probs_i_j = g.PeekRow(probs, i * tgtSeqLen + j, runGradients: false))
                                    {
                                        if (j < tgtOriginalLengths[i])
                                        {
                                            int   ix_targets_i_j = m_modelMetaData.Vocab.GetTargetWordIndex(leftShiftInputSeqs[i][j], logUnk: true);
                                            float score_i_j      = probs_i_j.GetWeightAt(ix_targets_i_j);

                                            cost += (float)-Math.Log(score_i_j);

                                            probs_i_j.SetWeightAt(score_i_j - 1, ix_targets_i_j);
                                        }
                                        else
                                        {
                                            probs_i_j.CleanWeight();
                                        }
                                    }
                                }
                            }

                            decOutput.CopyWeightsToGradients(probs);
                        }
                        //if (isTraining)
                        //{
                        //    var leftShiftInputSeqs = ParallelCorpus.LeftShiftSnts(tgtSeqs, ParallelCorpus.EOS);
                        //    int[] targetIds = new int[batchSize * tgtSeqLen];
                        //    int ids = 0;
                        //    for (int i = 0; i < batchSize; i++)
                        //    {
                        //        for (int j = 0; j < tgtSeqLen; j++)
                        //        {
                        //            targetIds[ids] = j < tgtOriginalLengths[i] ? m_modelMetaData.Vocab.GetTargetWordIndex(leftShiftInputSeqs[i][j], logUnk: true) : -1;
                        //            ids++;
                        //        }
                        //    }

                        //    cost += g.UpdateCost(probs, targetIds);
                        //    decOutput.CopyWeightsToGradients(probs);
                        //}
                        else
                        {
                            // Output "i"th target word
                            int[]         targetIdx   = g.Argmax(probs, 1);
                            List <string> targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());

                            for (int i = 0; i < batchSize; i++)
                            {
                                tgtSeqs[i].Add(targetWords[i * tgtSeqLen + tgtSeqLen - 1]);
                            }
                        }
                    }
                }
            }



            return(cost);
        }
Ejemplo n.º 7
0
        /// <summary>
        /// Decode output sentences in training
        /// </summary>
        /// <param name="outputSentences">In training mode, they are golden target sentences, otherwise, they are target sentences generated by the decoder</param>
        /// <param name="g"></param>
        /// <param name="encodedOutputs"></param>
        /// <param name="decoder"></param>
        /// <param name="decoderFFLayer"></param>
        /// <param name="embedding"></param>
        /// <returns></returns>
        private float Decode(List <List <string> > outputSentences, IComputeGraph g, IWeightTensor encodedOutputs, AttentionDecoder decoder, IWeightTensor embedding,
                             int batchSize, bool isTraining = true)
        {
            float cost = 0.0f;

            int[] ix_inputs = new int[batchSize];
            for (int i = 0; i < ix_inputs.Length; i++)
            {
                ix_inputs[i] = (int)SENTTAGS.START;
            }

            // Initialize variables accoridng to current mode
            List <int>    originalOutputLengths = isTraining ? ParallelCorpus.PadSentences(outputSentences) : null;
            int           seqLen       = isTraining ? outputSentences[0].Count : 64;
            float         dropoutRatio = isTraining ? m_dropoutRatio : 0.0f;
            HashSet <int> setEndSentId = isTraining ? null : new HashSet <int>();

            if (!isTraining)
            {
                if (outputSentences.Count != 0)
                {
                    throw new ArgumentException($"The list for output sentences must be empty if current is not in training mode.");
                }
                for (int i = 0; i < batchSize; i++)
                {
                    outputSentences.Add(new List <string>());
                }
            }

            // Pre-process for attention model
            AttentionPreProcessResult attPreProcessResult = decoder.PreProcess(encodedOutputs, batchSize, g);

            for (int i = 0; i < seqLen; i++)
            {
                //Get embedding for all sentence in the batch at position i
                List <IWeightTensor> inputs = new List <IWeightTensor>();
                for (int j = 0; j < batchSize; j++)
                {
                    inputs.Add(g.PeekRow(embedding, ix_inputs[j]));
                }
                IWeightTensor inputsM = g.ConcatRows(inputs);

                //Decode output sentence at position i
                IWeightTensor eOutput = decoder.Decode(inputsM, attPreProcessResult, batchSize, g);

                //Softmax for output
                using (IWeightTensor probs = g.Softmax(eOutput, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        //Calculate loss for each word in the batch
                        for (int k = 0; k < batchSize; k++)
                        {
                            using (IWeightTensor probs_k = g.PeekRow(probs, k, runGradients: false))
                            {
                                int   ix_targets_k = m_modelMetaData.Vocab.GetTargetWordIndex(outputSentences[k][i]);
                                float score_k      = probs_k.GetWeightAt(ix_targets_k);
                                if (i < originalOutputLengths[k])
                                {
                                    cost += (float)-Math.Log(score_k);
                                }

                                probs_k.SetWeightAt(score_k - 1, ix_targets_k);
                                ix_inputs[k] = ix_targets_k;
                            }
                        }
                        eOutput.CopyWeightsToGradients(probs);
                    }
                    else
                    {
                        // Output "i"th target word
                        int[]         targetIdx   = g.Argmax(probs, 1);
                        List <string> targetWords = m_modelMetaData.Vocab.ConvertTargetIdsToString(targetIdx.ToList());
                        for (int j = 0; j < targetWords.Count; j++)
                        {
                            if (setEndSentId.Contains(j) == false)
                            {
                                outputSentences[j].Add(targetWords[j]);

                                if (targetWords[j] == ParallelCorpus.EOS)
                                {
                                    setEndSentId.Add(j);
                                }
                            }
                        }

                        ix_inputs = targetIdx;
                    }
                }

                if (isTraining)
                {
                    ////Hacky: Run backward for last feed forward layer and dropout layer in order to save memory usage, since it's not time sequence dependency
                    g.RunTopBackward();
                    if (m_dropoutRatio > 0.0f)
                    {
                        g.RunTopBackward();
                    }
                }
                else
                {
                    if (setEndSentId.Count == batchSize)
                    {
                        // All target sentences in current batch are finished, so we exit.
                        break;
                    }
                }
            }

            return(cost);
        }
Ejemplo n.º 8
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            int batchSize = sntPairBatch.BatchSize;

            float cost = 0.0f;
            var   nrs  = new List <NetworkResult>();
            var   nr   = new NetworkResult {
                Output = new List <List <List <string> > >()
            };

            (IEncoder encoder, IWeightTensor srcEmbedding, IFeedForwardLayer encoderFFLayer, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            IWeightTensor encOutput1;
            IWeightTensor encOutput2;

            if (!isTraining && (m_options.ProcessorType == ProcessorTypeEnums.CPU))
            {
                //We only check cache at inference time
                string cacheKey1 = GenerateCacheKey(sntPairBatch.GetSrcTokens(0));
                if (!m_memoryCache.TryGetValue(cacheKey1, out encOutput1))
                {
                    encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey1, encOutput1.CopyWeightsRef($"cache_{encOutput1.Name}", false), cacheEntryOptions);
                }

                string cacheKey2 = GenerateCacheKey(sntPairBatch.GetSrcTokens(1));
                if (!m_memoryCache.TryGetValue(cacheKey2, out encOutput2))
                {
                    encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey2, encOutput2.CopyWeightsRef($"cache_{encOutput2.Name}", false), cacheEntryOptions);
                }
            }
            else
            {
                //We always run encoder network during training time or using GPUs
                encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]
                encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]
            }

            if (m_modelMetaData.SimilarityType.Equals("Continuous", StringComparison.InvariantCultureIgnoreCase))
            {
                // Cosine similairy
                var w12 = computeGraph.EltMul(encOutput1, encOutput2);
                w12 = computeGraph.Sum(w12, 1);
                var w1 = computeGraph.EltMul(encOutput1, encOutput1);
                w1 = computeGraph.Sum(w1, 1);
                var w2 = computeGraph.EltMul(encOutput2, encOutput2);
                w2 = computeGraph.Sum(w2, 1);
                var n12 = computeGraph.EltMul(w1, w2);
                n12 = computeGraph.Rsqrt(n12);
                var probs = computeGraph.EltMul(w12, n12);
                if (isTraining)
                {
                    var tgtSnts = sntPairBatch.GetTgtTokens(0);
                    for (int k = 0; k < batchSize; k++)
                    {
                        float golden_score_k = float.Parse(tgtSnts[k][0]); // Get golden similiary score from target side
                        float score_k        = probs.GetWeightAt(new long[] { k, 0 });

                        probs.SetWeightAt(score_k - golden_score_k, new long[] { k, 0 });
                        cost += (float)Math.Abs(score_k - golden_score_k);
                    }

                    probs.CopyWeightsToGradients(probs);
                    nr.Cost = cost / batchSize;
                }
                else
                {
                    nr.Output.Add(new List <List <string> >());
                    for (int k = 0; k < batchSize; k++)
                    {
                        float score_k = probs.GetWeightAt(new long[] { k, 0 });

                        nr.Output[0].Add(new List <string>());
                        nr.Output[0][k].Add(score_k.ToString());
                    }
                }
            }
            else
            {
                IWeightTensor encOutput = computeGraph.EltMul(encOutput1, encOutput2);
                IWeightTensor ffLayer   = encoderFFLayer.Process(encOutput, batchSize, computeGraph);
                using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var tgtSnts = sntPairBatch.GetTgtTokens(0);
                        for (int k = 0; k < batchSize; k++)
                        {
                            int   ix_targets_k_j = m_modelMetaData.ClsVocab.GetWordIndex(tgtSnts[k][0]);
                            float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                            cost += (float)-Math.Log(score_k);
                            probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                        }

                        ffLayer.CopyWeightsToGradients(probs);

                        nr.Cost = cost / batchSize;
                    }
                    else
                    {
                        // Output "i"th target word
                        using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                        float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                        List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());
                        nr.Output.Add(new List <List <string> >());

                        for (int k = 0; k < batchSize; k++)
                        {
                            nr.Output[0].Add(new List <string>());
                            nr.Output[0][k].Add(targetWords[k]);
                        }
                    }
                }
            }


            nrs.Add(nr);

            return(nrs);
        }
Ejemplo n.º 9
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            List <NetworkResult> nrs = new List <NetworkResult>();

            (IEncoder encoder, IWeightTensor srcEmbedding, List <IFeedForwardLayer> encoderFFLayer, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            var srcSnts            = sntPairBatch.GetSrcTokens(0);
            var originalSrcLengths = BuildInTokens.PadSentences(srcSnts);
            var srcTokensList      = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts);

            IWeightTensor encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths);

            int srcSeqPaddedLen = srcSnts[0].Count;
            int batchSize       = srcSnts.Count;

            float[] clsIdxs = new float[batchSize];
            for (int i = 0; i < batchSize; i++)
            {
                for (int j = 0; j < srcSnts[i].Count; j++)
                {
                    if (srcSnts[i][j] == BuildInTokens.CLS)
                    {
                        clsIdxs[i] = i * srcSeqPaddedLen + j;
                        break;
                    }
                }
            }

            IWeightTensor clsWeightTensor = computeGraph.IndexSelect(encOutput, clsIdxs);

            for (int i = 0; i < m_encoderFFLayer.Length; i++)
            {
                float         cost = 0.0f;
                NetworkResult nr   = new NetworkResult
                {
                    Output = new List <List <List <string> > >()
                };

                IWeightTensor ffLayer = encoderFFLayer[i].Process(clsWeightTensor, batchSize, computeGraph);
                using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var tgtSnts = sntPairBatch.GetTgtTokens(i);
                        for (int k = 0; k < batchSize; k++)
                        {
                            int   ix_targets_k_j = m_modelMetaData.ClsVocabs[i].GetWordIndex(tgtSnts[k][0]);
                            float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                            cost += (float)-Math.Log(score_k);
                            probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                        }

                        ffLayer.CopyWeightsToGradients(probs);

                        nr.Cost = cost / batchSize;
                    }
                    else
                    {
                        // Output "i"th target word
                        using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                        float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                        List <string> targetWords = m_modelMetaData.ClsVocabs[i].ConvertIdsToString(targetIdx.ToList());
                        nr.Output.Add(new List <List <string> >());

                        for (int k = 0; k < batchSize; k++)
                        {
                            nr.Output[0].Add(new List <string>());
                            nr.Output[0][k].Add(targetWords[k]);
                        }
                    }
                }

                nrs.Add(nr);
            }


            return(nrs);
        }
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            (IEncoder encoder, IDecoder decoder, IFeedForwardLayer encoderFFLayer, IFeedForwardLayer decoderFFLayer, IWeightTensor srcEmbedding, IWeightTensor tgtEmbedding, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            var srcSnts            = sntPairBatch.GetSrcTokens(0);
            var originalSrcLengths = BuildInTokens.PadSentences(srcSnts);
            var srcTokensList      = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts);

            IWeightTensor encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths);

            List <NetworkResult> nrs = new List <NetworkResult>();
            int srcSeqPaddedLen      = srcSnts[0].Count;
            int batchSize            = srcSnts.Count;

            float[] clsIdxs = new float[batchSize];
            for (int i = 0; i < batchSize; i++)
            {
                for (int j = 0; j < srcSnts[i].Count; j++)
                {
                    if (srcSnts[i][j] == BuildInTokens.CLS)
                    {
                        clsIdxs[i] = i * srcSeqPaddedLen + j;
                        break;
                    }
                }
            }

            IWeightTensor clsWeightTensor = computeGraph.IndexSelect(encOutput, clsIdxs);

            float         cost  = 0.0f;
            NetworkResult nrCLS = new NetworkResult
            {
                Output = new List <List <List <string> > >()
            };

            IWeightTensor ffLayer = encoderFFLayer.Process(clsWeightTensor, batchSize, computeGraph);

            using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
            {
                if (isTraining)
                {
                    var clsSnts = sntPairBatch.GetTgtTokens(0);
                    for (int k = 0; k < batchSize; k++)
                    {
                        int   ix_targets_k_j = m_modelMetaData.ClsVocab.GetWordIndex(clsSnts[k][0]);
                        float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                        cost += (float)-Math.Log(score_k);
                        probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                    }

                    ffLayer.CopyWeightsToGradients(probs);

                    nrCLS.Cost = cost / batchSize;
                }
                else
                {
                    // Output "i"th target word
                    using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                    float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                    List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());
                    nrCLS.Output.Add(new List <List <string> >());

                    for (int k = 0; k < batchSize; k++)
                    {
                        nrCLS.Output[0].Add(new List <string>());
                        nrCLS.Output[0][k].Add(targetWords[k]);
                    }
                }
            }

            // Reset networks
            decoder.Reset(computeGraph.GetWeightFactory(), srcSnts.Count);

            // Generate output decoder sentences
            var tgtSnts       = sntPairBatch.GetTgtTokens(1);
            var tgtTokensList = m_modelMetaData.TgtVocab.GetWordIndex(tgtSnts);

            NetworkResult nr = new NetworkResult();

            if (decoder is AttentionDecoder)
            {
                nr.Cost   = Decoder.DecodeAttentionLSTM(tgtTokensList, computeGraph, encOutput, decoder as AttentionDecoder, decoderFFLayer, tgtEmbedding, m_modelMetaData.TgtVocab, srcSnts.Count, isTraining);
                nr.Output = new List <List <List <string> > >
                {
                    m_modelMetaData.TgtVocab.ConvertIdsToString(tgtTokensList)
                };
            }
            else
            {
                if (isTraining)
                {
                    (var c, _) = Decoder.DecodeTransformer(tgtTokensList, computeGraph, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding, originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, m_options.DropoutRatio, null, isTraining);
                    nr.Cost    = c;
                    nr.Output  = null;
                }
                else
                {
                    List <List <BeamSearchStatus> > beam2batchStatus = Decoder.InitBeamSearchStatusListList(batchSize, tgtTokensList);
                    for (int i = 0; i < decodingOptions.MaxTgtSentLength; i++)
                    {
                        List <List <BeamSearchStatus> > batch2beam2seq = null; //(batch_size, beam_search_size)
                        try
                        {
                            foreach (var batchStatus in beam2batchStatus)
                            {
                                var batch2tgtTokens = Decoder.ExtractBatchTokens(batchStatus);
                                using var g = computeGraph.CreateSubGraph($"TransformerDecoder_Step_{i}");
                                (var cost2, var bssSeqList) = Decoder.DecodeTransformer(batch2tgtTokens, g, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding,
                                                                                        originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, 0.0f, decodingOptions, isTraining,
                                                                                        outputSentScore: decodingOptions.BeamSearchSize > 1, previousBeamSearchResults: batchStatus);

                                bssSeqList     = Decoder.SwapBeamAndBatch(bssSeqList);
                                batch2beam2seq = Decoder.CombineBeamSearchResults(batch2beam2seq, bssSeqList);
                            }
                        }
                        catch (OutOfMemoryException)
                        {
                            GC.Collect();
                            Logger.WriteLine(Logger.Level.warn, $"We have out of memory while generating '{i}th' tokens, so terminate decoding for current sequences.");
                            break;
                        }

                        if (decodingOptions.BeamSearchSize > 1)
                        {
                            // Keep top N result and drop all others
                            for (int k = 0; k < batchSize; k++)
                            {
                                batch2beam2seq[k] = BeamSearch.GetTopNBSS(batch2beam2seq[k], decodingOptions.BeamSearchSize);
                            }
                        }


                        beam2batchStatus = Decoder.SwapBeamAndBatch(batch2beam2seq);
                        if (Decoder.AreAllSentsCompleted(beam2batchStatus))
                        {
                            break;
                        }
                    }

                    nr.Cost   = 0.0f;
                    nr.Output = m_modelMetaData.TgtVocab.ExtractTokens(beam2batchStatus);
                }
            }

            nr.RemoveDuplicatedEOS();

            nrs.Add(nrCLS);
            nrs.Add(nr);

            return(nrs);
        }