Ejemplo n.º 1
0
 protected void rescale(Floatarray outv, Floatarray sub)
 {
     if (sub.Rank() != 2)
         throw new Exception("CHECK_ARG: sub.Rank()==2");
     int csize = PGeti("csize");
     int indent = PGeti("indent");
     float s = Math.Max(sub.Dim(0), sub.Dim(1)) / (float)(csize - indent - indent);
     if (PGeti("noupscale") > 0 && s < 1.0f)
         s = 1.0f;
     float sig = s * PGetf("aa");
     float dx = (csize * s - sub.Dim(0)) / 2;
     float dy = (csize * s - sub.Dim(1)) / 2;
     if (sig > 1e-3f)
         Gauss.Gauss2d(sub, sig, sig);
     outv.Resize(csize, csize);
     outv.Fill(0f);
     for (int i = 0; i < csize; i++)
     {
         for (int j = 0; j < csize; j++)
         {
             float x = i * s - dx;
             float y = j * s - dy;
             if (x < 0 || x >= sub.Dim(0)) continue;
             if (y < 0 || y >= sub.Dim(1)) continue;
             float value = ImgOps.bilin(sub, x, y);
             outv[i, j] = value;
         }
     }
     /*Global.Debugf("fe", "{0} {1} ({2}) -> {3} {4} ({5})\n",
            sub.Dim(0), sub.Dim(1), NarrayUtil.Max(sub),
            outv.Dim(0), outv.Dim(1), NarrayUtil.Max(outv));*/
 }
Ejemplo n.º 2
0
        public TrainInfo TestDense(IDataset ts)
        {
            TrainInfo  trInfo = new TrainInfo();
            bool       first  = true;
            Floatarray v      = new Floatarray();

            // Send Test Dataset to Lenet
            for (int i = 0; i < ts.nSamples(); i++)
            {
                ts.Input(v, i);
                if (v.Rank() == 1)
                {
                    v.Reshape(csize, csize, 0, 0);
                }
                StdInput linput = new StdInput(v);
                if (first)
                {
                    first = false;
                    BeginTestEpoch(HrLenet, linput.Height, linput.Width, ts.nSamples());   // init test
                }
                try
                {
                    if (C2i.ContainsKey(ts.Cls(i)))
                    {
                        AddSampleToTestOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ts.Cls(i)]);
                    }
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                    {
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTestOfEpoch");
                    }
                    throw new Exception("Exception in AddSampleToTestOfEpoch\r\n" + e.Message);
                }
            }

            // do test one epoch
            try
            {
                EndAndRunTestEpoch(HrLenet, ref trInfo);
            }
            catch (Exception e)
            {
                GetStdout(sbout);   // get test messages
                if (sbout.Length > 0)
                {
                    Global.Debugf("error", sbout.ToString() + "\r\nException in EndAndRunTestEpoch");
                }
                throw new Exception("Exception in EndAndRunTestEpoch\r\n" + e.Message);
            }

            return(trInfo);
        }
Ejemplo n.º 3
0
 public static void putd1 <T, S>(Floatarray image, Floatarray slice, int index)
 {
     if (!(slice.Rank() == 1 && slice.Dim(0) == image.Dim(0)))
     {
         throw new Exception("ASSERT: slice.Rank()==1 && slice.Dim(0)==image.Dim(1)");
     }
     for (int i = 0; i < image.Dim(0); i++)
     {
         image.UnsafePut(i, index, slice.UnsafeAt(i));
     }
 }
Ejemplo n.º 4
0
        protected override float Outputs(OutputVector result, Floatarray v)
        {
            result.Clear();
            if (v.Rank() == 1)
            {
                v.Reshape(csize, csize, 0, 0);
            }
            // byte array input
            StdInput vinput = new StdInput(v);

            byte[] buffer = vinput.GetDataBuffer();

            // char classifier compute outputs
            if (CharClass.AsciiTarget)
            {
                // net output 0..~ (lower - winner)
                CharClass.ComputeOutputs(buffer, vinput.Length, vinput.Height, vinput.Width, result);
            }
            else
            {
                // net output 0..1; (higher - winner)
                CharClass.ComputeOutputsRaw(buffer, vinput.Length, vinput.Height, vinput.Width, result);
            }

            // junk classifier
            if (PGetb("junk") && !DisableJunk && !JunkClass.IsEmpty)
            {
                OutputVector jv = new OutputVector();
                if (JunkClass.AsciiTarget)
                {
                    JunkClass.ComputeOutputs(buffer, vinput.Length, vinput.Height, vinput.Width, jv);
                    result[jc()] = jv.Value(1);
                }
                else
                {
                    //result.Normalize();
                    result.Normalize2();
                    JunkClass.ComputeOutputsRaw(buffer, vinput.Length, vinput.Height, vinput.Width, jv);
                    jv.Normalize2();
                    for (int i = 0; i < result.nKeys(); i++)
                    {
                        result.Values[i] *= jv.Value(0);
                    }
                    result[jc()] = jv.Value(1);
                }
            }

            return(0.0f);
        }
Ejemplo n.º 5
0
        protected void rescale(Floatarray outv, Floatarray sub)
        {
            if (sub.Rank() != 2)
            {
                throw new Exception("CHECK_ARG: sub.Rank()==2");
            }
            int   csize  = PGeti("csize");
            int   indent = PGeti("indent");
            float s      = Math.Max(sub.Dim(0), sub.Dim(1)) / (float)(csize - indent - indent);

            if (PGeti("noupscale") > 0 && s < 1.0f)
            {
                s = 1.0f;
            }
            float sig = s * PGetf("aa");
            float dx  = (csize * s - sub.Dim(0)) / 2;
            float dy  = (csize * s - sub.Dim(1)) / 2;

            if (sig > 1e-3f)
            {
                Gauss.Gauss2d(sub, sig, sig);
            }
            outv.Resize(csize, csize);
            outv.Fill(0f);
            for (int i = 0; i < csize; i++)
            {
                for (int j = 0; j < csize; j++)
                {
                    float x = i * s - dx;
                    float y = j * s - dy;
                    if (x < 0 || x >= sub.Dim(0))
                    {
                        continue;
                    }
                    if (y < 0 || y >= sub.Dim(1))
                    {
                        continue;
                    }
                    float value = ImgOps.bilin(sub, x, y);
                    outv[i, j] = value;
                }
            }

            /*Global.Debugf("fe", "{0} {1} ({2}) -> {3} {4} ({5})\n",
             *     sub.Dim(0), sub.Dim(1), NarrayUtil.Max(sub),
             *     outv.Dim(0), outv.Dim(1), NarrayUtil.Max(outv));*/
        }
Ejemplo n.º 6
0
        protected void rescale(Floatarray v, Floatarray input)
        {
            if (input.Rank() != 2)
            {
                throw new Exception("CHECK_ARG: sub.Rank()==2");
            }

            Floatarray sub = new Floatarray();
            // find the largest connected component
            // and crop to its bounding box
            // (use a binary version of the character
            // to compute the bounding box)
            Intarray components = new Intarray();
            float    threshold  = PGetf("threshold") * NarrayUtil.Max(input);

            Global.Debugf("biggestcc", "threshold {0}", threshold);
            components.MakeLike(input);
            components.Fill(0);
            for (int i = 0; i < components.Length(); i++)
            {
                components[i] = (input[i] > threshold ? 1 : 0);
            }
            int      n      = ImgLabels.label_components(ref components);
            Intarray totals = new Intarray(n + 1);

            totals.Fill(0);
            for (int i = 0; i < components.Length(); i++)
            {
                totals[components[i]]++;
            }
            totals[0] = 0;
            Narray <Rect> boxes = new Narray <Rect>();

            ImgLabels.bounding_boxes(ref boxes, components);
            int  biggest = NarrayUtil.ArgMax(totals);
            Rect r       = boxes[biggest];
            int  pad     = (int)(PGetf("pad") + 0.5f);

            r.PadBy(pad, pad);
            Global.Debugf("biggestcc", "({0}) {1}[{2}] :: {3} {4} {5} {6}",
                          n, biggest, totals[biggest],
                          r.x0, r.y0, r.x1, r.y1);

            // now perform normal feature extraction
            // (use the original grayscale input)
            sub = input;
            ImgMisc.Crop(sub, r);
            int   csize = PGeti("csize");
            float s     = Math.Max(sub.Dim(0), sub.Dim(1)) / (float)csize;

            if (PGetf("noupscale") > 0 && s < 1.0f)
            {
                s = 1.0f;
            }
            float sig = s * PGetf("aa");
            float dx  = (csize * s - sub.Dim(0)) / 2f;
            float dy  = (csize * s - sub.Dim(1)) / 2f;

            if (sig > 1e-3f)
            {
                Gauss.Gauss2d(sub, sig, sig);
            }
            v.Resize(csize, csize);
            v.Fill(0f);
            for (int i = 0; i < csize; i++)
            {
                for (int j = 0; j < csize; j++)
                {
                    float x = i * s - dx;
                    float y = j * s - dy;
                    if (x < 0 || x >= sub.Dim(0))
                    {
                        continue;
                    }
                    if (y < 0 || y >= sub.Dim(1))
                    {
                        continue;
                    }
                    float value = ImgOps.bilin(sub, x, y);
                    v[i, j] = value;
                }
            }

            /*Global.Debugf("biggestcc", "{0} {1} ({2}) -> {3} {4} ({5})",
             *     sub.Dim(0), sub.Dim(1), NarrayUtil.Max(sub),
             *     v.Dim(0), v.Dim(1), NarrayUtil.Max(v));*/
        }
Ejemplo n.º 7
0
        public virtual TrainInfo TrainBatch(IDataset ds, IDataset ts, int epochs)
        {
            TrainInfo  trInfo = new TrainInfo();
            bool       first  = true;
            Floatarray v      = new Floatarray();

            // Send Train Dataset to Lenet
            for (int i = 0; i < ds.nSamples(); i++)
            {
                ds.Input(v, i);
                if (v.Rank() == 1)
                {
                    v.Reshape(csize, csize, 0, 0);
                }
                StdInput linput = new StdInput(v);
                try
                {
                    if (first)
                    {
                        first = false;
                        //StartRedirectStdout();  // start redirect cout to string buffer
                        BeginTrainEpoch(HrLenet, linput.Height, linput.Width, ds.nSamples(), ts.nSamples());   // init train
                    }
                    if (C2i.ContainsKey(ds.Cls(i)))
                    {
                        AddSampleToTrainOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ds.Cls(i)]);
                    }
                    else
                    {
                        Global.Debugf("error", "class '{0}' is not contained in the char list", (char)ds.Cls(i));
                    }
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                    {
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTrainOfEpoch");
                    }
                    throw new Exception("Exception in AddSampleToTrainOfEpoch\r\n" + e.Message);
                }
            }

            // Send Test Dataset to Lenet
            for (int i = 0; i < ts.nSamples(); i++)
            {
                ts.Input(v, i);
                if (v.Rank() == 1)
                {
                    v.Reshape(csize, csize, 0, 0);
                }
                StdInput linput = new StdInput(v);
                try
                {
                    if (C2i.ContainsKey(ts.Cls(i)))
                    {
                        AddSampleToTestOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ts.Cls(i)]);
                    }
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                    {
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTestOfEpoch");
                    }
                    throw new Exception("Exception in AddSampleToTestOfEpoch\r\n" + e.Message);
                }
            }

            // debug save mnist
            //SaveTrainMnist(HrLenet, "debug-images-idx3-ubyte", "debug-labels-idx1-ubyte");

            // do train epochs
            for (int epoch = 0; epoch < epochs; epoch++)
            {
                trInfo = new TrainInfo();
                try
                {
                    DateTime startDate = DateTime.Now;
                    EndAndRunTrainEpoch(HrLenet, ref trInfo);   // do train one epoch
                    // show train info
                    Global.Debugf("info",
                                  String.Format("|{0,7}| Energy:{1:0.#####} Correct:{2:0.00#%} Errors:{3:0.00#%} Count:{4} ",
                                                trInfo.age, trInfo.energy, (trInfo.correct / (float)trInfo.size),
                                                (trInfo.error / (float)trInfo.size), trInfo.size));
                    Global.Debugf("info",
                                  String.Format("     TEST Energy={0:0.#####} Correct={1:0.00#%} Errors={2:0.00#%} Count={3} ",
                                                trInfo.tenergy, (trInfo.tcorrect / (float)trInfo.tsize),
                                                (trInfo.terror / (float)trInfo.tsize), trInfo.tsize));
                    TimeSpan spanTrain = DateTime.Now - startDate;
                    Global.Debugf("info", String.Format("          training time: {0} minutes, {1} seconds",
                                                        (int)spanTrain.TotalMinutes, spanTrain.Seconds));

                    // get dll stdout messages
                    GetStdout(sbout);
                    if (sbout.Length > 0)
                    {
                        Console.Write(sbout.ToString());
                    }
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                    {
                        Global.Debugf("error", sbout.ToString() + "\r\nException in EndAndRunTrainEpoch");
                    }
                    throw new Exception("Exception in EndAndRunTrainEpoch\r\n" + e.Message);
                }
            }
            return(trInfo);
        }
Ejemplo n.º 8
0
        protected override float Outputs(OutputVector result, Floatarray v)
        {
            result.Clear();
            if (v.Rank() == 1)
                v.Reshape(csize, csize, 0, 0);
            // byte array input
            StdInput vinput = new StdInput(v);
            byte[] buffer = vinput.GetDataBuffer();

            // char classifier compute outputs
            if (CharClass.AsciiTarget)
                // net output 0..~ (lower - winner)
                CharClass.ComputeOutputs(buffer, vinput.Length, vinput.Height, vinput.Width, result);
            else
                // net output 0..1; (higher - winner)
                CharClass.ComputeOutputsRaw(buffer, vinput.Length, vinput.Height, vinput.Width, result);

            // junk classifier
            if (PGetb("junk") && !DisableJunk && !JunkClass.IsEmpty)
            {
                OutputVector jv = new OutputVector();
                if (JunkClass.AsciiTarget)
                {
                    JunkClass.ComputeOutputs(buffer, vinput.Length, vinput.Height, vinput.Width, jv);
                    result[jc()] = jv.Value(1);
                }
                else
                {
                    //result.Normalize();
                    result.Normalize2();
                    JunkClass.ComputeOutputsRaw(buffer, vinput.Length, vinput.Height, vinput.Width, jv);
                    jv.Normalize2();
                    for (int i = 0; i < result.nKeys(); i++)
                        result.Values[i] *= jv.Value(0);
                    result[jc()] = jv.Value(1);
                }
            }

            return 0.0f;
        }
Ejemplo n.º 9
0
        public virtual TrainInfo TrainBatch(IDataset ds, IDataset ts, int epochs)
        {
            TrainInfo trInfo = new TrainInfo();
            bool first = true;
            Floatarray v = new Floatarray();

            // Send Train Dataset to Lenet
            for (int i = 0; i < ds.nSamples(); i++)
            {
                ds.Input(v, i);
                if (v.Rank() == 1)
                    v.Reshape(csize, csize, 0, 0);
                StdInput linput = new StdInput(v);
                try
                {
                    if (first)
                    {
                        first = false;
                        //StartRedirectStdout();  // start redirect cout to string buffer
                        BeginTrainEpoch(HrLenet, linput.Height, linput.Width, ds.nSamples(), ts.nSamples());   // init train
                    }
                    if (C2i.ContainsKey(ds.Cls(i)))
                        AddSampleToTrainOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ds.Cls(i)]);
                    else
                        Global.Debugf("error", "class '{0}' is not contained in the char list", (char)ds.Cls(i));
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTrainOfEpoch");
                    throw new Exception("Exception in AddSampleToTrainOfEpoch\r\n" + e.Message);
                }
            }

            // Send Test Dataset to Lenet
            for (int i = 0; i < ts.nSamples(); i++)
            {
                ts.Input(v, i);
                if (v.Rank() == 1)
                    v.Reshape(csize, csize, 0, 0);
                StdInput linput = new StdInput(v);
                try
                {
                    if (C2i.ContainsKey(ts.Cls(i)))
                        AddSampleToTestOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ts.Cls(i)]);
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTestOfEpoch");
                    throw new Exception("Exception in AddSampleToTestOfEpoch\r\n" + e.Message);
                }
            }

            // debug save mnist
            //SaveTrainMnist(HrLenet, "debug-images-idx3-ubyte", "debug-labels-idx1-ubyte");

            // do train epochs
            for (int epoch = 0; epoch < epochs; epoch++)
            {
                trInfo = new TrainInfo();
                try
                {
                    DateTime startDate = DateTime.Now;
                    EndAndRunTrainEpoch(HrLenet, ref trInfo);   // do train one epoch
                    // show train info
                    Global.Debugf("info",
                        String.Format("|{0,7}| Energy:{1:0.#####} Correct:{2:0.00#%} Errors:{3:0.00#%} Count:{4} ",
                            trInfo.age, trInfo.energy, (trInfo.correct / (float)trInfo.size),
                            (trInfo.error / (float)trInfo.size), trInfo.size) );
                    Global.Debugf("info",
                        String.Format("     TEST Energy={0:0.#####} Correct={1:0.00#%} Errors={2:0.00#%} Count={3} ",
                            trInfo.tenergy, (trInfo.tcorrect / (float)trInfo.tsize),
                            (trInfo.terror / (float)trInfo.tsize), trInfo.tsize));
                    TimeSpan spanTrain = DateTime.Now - startDate;
                    Global.Debugf("info", String.Format("          training time: {0} minutes, {1} seconds",
                        (int)spanTrain.TotalMinutes, spanTrain.Seconds));

                    // get dll stdout messages
                    GetStdout(sbout);
                    if (sbout.Length > 0)
                        Console.Write(sbout.ToString());
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                        Global.Debugf("error", sbout.ToString() + "\r\nException in EndAndRunTrainEpoch");
                    throw new Exception("Exception in EndAndRunTrainEpoch\r\n" + e.Message);
                }
            }
            return trInfo;
        }
Ejemplo n.º 10
0
        public TrainInfo TestDense(IDataset ts)
        {
            TrainInfo trInfo = new TrainInfo();
            bool first = true;
            Floatarray v = new Floatarray();
            // Send Test Dataset to Lenet
            for (int i = 0; i < ts.nSamples(); i++)
            {
                ts.Input(v, i);
                if (v.Rank() == 1)
                    v.Reshape(csize, csize, 0, 0);
                StdInput linput = new StdInput(v);
                if (first)
                {
                    first = false;
                    BeginTestEpoch(HrLenet, linput.Height, linput.Width, ts.nSamples());   // init test
                }
                try
                {
                    if (C2i.ContainsKey(ts.Cls(i)))
                        AddSampleToTestOfEpoch(HrLenet, linput.GetDataBuffer(), linput.Length, C2i[ts.Cls(i)]);
                }
                catch (Exception e)
                {
                    GetStdout(sbout);   // get train messages
                    if (sbout.Length > 0)
                        Global.Debugf("error", sbout.ToString() + "\r\nException in AddSampleToTestOfEpoch");
                    throw new Exception("Exception in AddSampleToTestOfEpoch\r\n" + e.Message);
                }
            }

            // do test one epoch
            try
            {
                EndAndRunTestEpoch(HrLenet, ref trInfo);
            }
            catch (Exception e)
            {
                GetStdout(sbout);   // get test messages
                if (sbout.Length > 0)
                    Global.Debugf("error", sbout.ToString() + "\r\nException in EndAndRunTestEpoch");
                throw new Exception("Exception in EndAndRunTestEpoch\r\n" + e.Message);
            }

            return trInfo;
        }
Ejemplo n.º 11
0
        protected void rescale(Floatarray v, Floatarray input)
        {
            if (input.Rank() != 2)
                throw new Exception("CHECK_ARG: sub.Rank()==2");

            Floatarray sub = new Floatarray();
            // find the largest connected component
            // and crop to its bounding box
            // (use a binary version of the character
            // to compute the bounding box)
            Intarray components = new Intarray();
            float threshold = PGetf("threshold") * NarrayUtil.Max(input);
            Global.Debugf("biggestcc", "threshold {0}", threshold);
            components.MakeLike(input);
            components.Fill(0);
            for (int i = 0; i < components.Length(); i++)
                components[i] = (input[i] > threshold ? 1 : 0);
            int n = ImgLabels.label_components(ref components);
            Intarray totals = new Intarray(n + 1);
            totals.Fill(0);
            for (int i = 0; i < components.Length(); i++)
                totals[components[i]]++;
            totals[0] = 0;
            Narray<Rect> boxes = new Narray<Rect>();
            ImgLabels.bounding_boxes(ref boxes, components);
            int biggest = NarrayUtil.ArgMax(totals);
            Rect r = boxes[biggest];
            int pad = (int)(PGetf("pad") + 0.5f);
            r.PadBy(pad, pad);
            Global.Debugf("biggestcc", "({0}) {1}[{2}] :: {3} {4} {5} {6}",
                   n, biggest, totals[biggest],
                   r.x0, r.y0, r.x1, r.y1);

            // now perform normal feature extraction
            // (use the original grayscale input)
            sub = input;
            ImgMisc.Crop(sub, r);
            int csize = PGeti("csize");
            float s = Math.Max(sub.Dim(0), sub.Dim(1))/(float)csize;
            if(PGetf("noupscale") > 0 && s < 1.0f)
                s = 1.0f;
            float sig = s * PGetf("aa");
            float dx = (csize*s-sub.Dim(0))/2f;
            float dy = (csize*s-sub.Dim(1))/2f;
            if(sig > 1e-3f)
                Gauss.Gauss2d(sub, sig, sig);
            v.Resize(csize, csize);
            v.Fill(0f);
            for (int i = 0; i < csize; i++)
            {
                for (int j = 0; j < csize; j++)
                {
                    float x = i * s - dx;
                    float y = j * s - dy;
                    if (x < 0 || x >= sub.Dim(0)) continue;
                    if (y < 0 || y >= sub.Dim(1)) continue;
                    float value = ImgOps.bilin(sub, x, y);
                    v[i, j] = value;
                }
            }
            /*Global.Debugf("biggestcc", "{0} {1} ({2}) -> {3} {4} ({5})",
                   sub.Dim(0), sub.Dim(1), NarrayUtil.Max(sub),
                   v.Dim(0), v.Dim(1), NarrayUtil.Max(v));*/
        }