/// <summary> /// フィールド値をセットする /// </summary> /// <param name="valuesAll"></param> /// <param name="nodesRegionToIndex"></param> /// <param name="factorForRot">回転に掛ける因子(磁界または電界への変換)</param> public virtual void SetFieldValueFromAllValues(Complex[] valuesAll, Dictionary<int, int> nodesRegionToIndex, Complex factorForRot, double[,] media_Q, FemSolver.WGStructureDV wgStructureDv, FemSolver.WaveModeDV waveModeDv) { _FValues = new Complex[NodeNumbers.Length]; for (int ino = 0; ino < NodeNumbers.Length; ino++) { int nodeNumber = NodeNumbers[ino]; if (nodesRegionToIndex.ContainsKey(nodeNumber)) { int nodeIndex = nodesRegionToIndex[nodeNumber]; //_FValues[ino] = valuesAll[nodeIndex]; _FValues[ino].Real = valuesAll[nodeIndex].Real; _FValues[ino].Imaginary = valuesAll[nodeIndex].Imaginary; } else { // 強制境界とみなす //_FValues[ino] = new Complex(); } } _FactorForRot = factorForRot; for (int i = 0; i < _media_Q.GetLength(0); i++) { for (int j = 0; j < _media_Q.GetLength(1); j++) { _media_Q[i, j] = media_Q[i, j]; } } _WGStructureDv = wgStructureDv; _WaveModeDv = waveModeDv; // フィールドの回転を求める calcRotField(out _RotXFValues, out _RotYFValues); // 複素共役を格納 //if (_RotXFValues != null && _RotYFValues != null) //{ // int nno = NodeNumbers.Length; // for (int ino = 0; ino < nno; ino++) // { // _RotXFValues[ino] = Complex.Conjugate(_RotXFValues[ino]); // _RotYFValues[ino] = Complex.Conjugate(_RotYFValues[ino]); // } //} // 回転を計算できたら(実装されていたら)、複素ポインティングベクトルを計算する _PoyntingXFValues = null; _PoyntingYFValues = null; if (_RotXFValues != null && _RotYFValues != null) { int nno = NodeNumbers.Length; _PoyntingXFValues = new Complex[nno]; _PoyntingYFValues = new Complex[nno]; for (int ino = 0; ino < nno; ino++) { if (_WGStructureDv == FemSolver.WGStructureDV.EPlane2D) { if (_WaveModeDv == FemSolver.WaveModeDV.TM) { // F:電界(Z成分) // G:磁界(XY成分) // (E x H*) = (fz x (rot)*) = { - fz(roty)*, fz (rotx)* } (rotは_FactorForRotを乗算済み) _PoyntingXFValues[ino] = _FValues[ino] * Complex.Conjugate(_RotYFValues[ino]); _PoyntingYFValues[ino] = -1.0 * _FValues[ino] * Complex.Conjugate(_RotXFValues[ino]); } else { // F:磁界(Z成分) // G:電界(XY成分) // E x H* = rot x (fz)* = { (fz)*(roty), - (fz)* (rotx) } (rotは_FactorForRotを乗算済み) //_PoyntingXFValues[ino] = -1.0 * Complex.Conjugate(_FValues[ino]) * _RotYFValues[ino]; //_PoyntingYFValues[ino] = Complex.Conjugate(_FValues[ino]) * _RotXFValues[ino]; _PoyntingXFValues[ino] = -1.0 * _FValues[ino] * Complex.Conjugate(_RotYFValues[ino]); _PoyntingYFValues[ino] = _FValues[ino] * Complex.Conjugate(_RotXFValues[ino]); } } else { if (_WaveModeDv == FemSolver.WaveModeDV.TM) { // F:磁界(Z成分) // G:電界(XY成分) // E x H* = rot x (fz)* = { (fz)*(roty), - (fz)* (rotx) } (rotは_FactorForRotを乗算済み) //_PoyntingXFValues[ino] = -1.0 * Complex.Conjugate(_FValues[ino]) * _RotYFValues[ino]; //_PoyntingYFValues[ino] = Complex.Conjugate(_FValues[ino]) * _RotXFValues[ino]; _PoyntingXFValues[ino] = -1.0 * _FValues[ino] * Complex.Conjugate(_RotYFValues[ino]); _PoyntingYFValues[ino] = _FValues[ino] * Complex.Conjugate(_RotXFValues[ino]); } else { // F:電界(Z成分) // G:磁界(XY成分) // (E x H*) = (fz x (rot)*) = { - fz(roty)*, fz (rotx)* } (rotは_FactorForRotを乗算済み) _PoyntingXFValues[ino] = _FValues[ino] * Complex.Conjugate(_RotYFValues[ino]); _PoyntingYFValues[ino] = -1.0 * _FValues[ino] * Complex.Conjugate(_RotXFValues[ino]); } } } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_FirstOrder; //4; // 1次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ + +2 // | | | // ---+---+---+-->r // | | | // 0+ + +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno] { { { 2.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx) }, { -2.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx) }, { -1.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx) }, { 1.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx) }, }, { { 2.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly) }, { 1.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly) }, { -1.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly) }, { -2.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly) }, } }; // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 }, { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/* 数値積分版 * /// <summary> * /// ヘルムホルツ方程式に対する有限要素マトリクス作成 * /// </summary> * /// <param name="waveLength">波長</param> * /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> * /// <param name="element">有限要素</param> * /// <param name="Nodes">節点リスト</param> * /// <param name="Medias">媒質リスト</param> * /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> * /// <param name="WaveModeDv">計算する波のモード区分</param> * /// <param name="mat">マージされる全体行列</param> * public static void AddElementMat(double waveLength, * Dictionary<int, int> toSorted, * FemElement element, * IList<FemNode> Nodes, * MediaInfo[] Medias, * Dictionary<int, bool> ForceNodeNumberH, * FemSolver.WaveModeDv WaveModeDv, * ref MyComplexMatrix mat) * { * // 定数 * const double pi = Constants.pi; * const double c0 = Constants.c0; * // 波数 * double k0 = 2.0 * pi / waveLength; * // 角周波数 * double omega = k0 * c0; * * // 要素頂点数 * const int vertexCnt = Constants.QuadVertexCnt; //4; * // 要素内節点数 * const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ * // 座標次元数 * const int ndim = Constants.CoordDim2D; //2; * * int[] nodeNumbers = element.NodeNumbers; * int[] no_c = new int[nno]; * MediaInfo media = Medias[element.MediaIndex]; * double[,] media_P = null; * double[,] media_Q = null; * if (WaveModeDv == FemSolver.WaveModeDv.TE) * { * media_P = media.P; * media_Q = media.Q; * } * else if (WaveModeDv == FemSolver.WaveModeDv.TM) * { * media_P = media.Q; * media_Q = media.P; * } * else * { * System.Diagnostics.Debug.Assert(false); * } * // [p]は逆数をとる * media_P = MyMatrixUtil.matrix_Inverse(media_P); * * // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) * double[][] pp = new double[nno][]; * for (int ino = 0; ino < nno; ino++) * { * int nodeNumber = nodeNumbers[ino]; * int nodeIndex = nodeNumber - 1; * FemNode node = Nodes[nodeIndex]; * * no_c[ino] = nodeNumber; * pp[ino] = new double[ndim]; * for (int n = 0; n < ndim; n++) * { * pp[ino][n] = node.Coord[n]; * } * } * * //// 四角形の辺の長さを求める * //double[] le = new double[4]; * //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); * //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); * //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); * //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); * * // 要素節点座標( 局所r,s成分 ) * // s * // | * // 3+ 6 +2 * // | | | * // ---7---+---5-->r * // | | | * // 0+ 4 +1 * // | * // * double[][] n_pts = * { * // r, s * new double[] {-1.0, -1.0}, //0 * new double[] { 1.0, -1.0}, //1 * new double[] { 1.0, 1.0}, //2 * new double[] {-1.0, 1.0}, //3 * new double[] { 0, -1.0}, //4 * new double[] { 1.0, 0}, //5 * new double[] { 0, 1.0}, //6 * new double[] {-1.0, 0}, //7 * }; * * * // ガウスルジャンドルの積分公式 * double[][] g_pts = new double[5][] * { * // ポイント(ξ: [-1 +1]区間)、重み * new double[] { -0.90617985, 0.23692689}, * new double[] { -0.53846931, 0.47862867}, * new double[] {0.0, 0.56888889}, * new double[] {0.53846931, 0.47862867}, * new double[] {0.90617985, 0.23692689} * }; * * // 要素剛性行列を作る * double[,] emat = new Complex[nno, nno]; * for (int ino = 0; ino < nno; ino++) * { * for (int jno = 0; jno < nno; jno++) * { * emat[ino, jno] = 0.0; * double detjsum = 0; //check * foreach (double[] s_g_pt in g_pts) * { * foreach (double[] r_g_pt in g_pts) * { * // 積分点 * double r = r_g_pt[0]; * double s = s_g_pt[0]; * // 重み(2次元) * double weight = r_g_pt[1] * s_g_pt[1]; * // 形状関数 * double[] N = new double[nno]; * // 形状関数のr, s方向微分 * double[] dNdr = new double[nno]; * double[] dNds = new double[nno]; * // 節点0~3 : 四角形の頂点 * for (int i = 0; i < 4; i++) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0); * // 形状関数のr方向微分 * dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s); * } * // 節点4,6 : r方向辺上中点 * foreach (int i in new int[]{ 4, 6}) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s); * // 形状関数のr方向微分 * dNdr[i] = -1.0 * r * (1.0 + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.5 * si * (1.0 - r * r); * } * // 節点5,7 : s方向辺上中点 * foreach (int i in new int[] { 5, 7 }) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s); * // 形状関数のr方向微分 * dNdr[i] = 0.5 * ri * (1.0 - s * s); * // 形状関数のs方向微分 * dNds[i] = -1.0 * s * (1.0 + ri * r); * } * * // ヤコビアン行列 * double j11; * double j12; * double j21; * double j22; * j11 = 0; * j12 = 0; * j21 = 0; * j22 = 0; * * //for (int i = 0; i < vertexCnt; i++) * //{ * // // 頂点の座標の微分 * // // 座標の形状関数は一次四角形のものを使用する * // // 節点の局所座標 * // double ri = n_pts[i][0]; * // double si = n_pts[i][1]; * // double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s); * // double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si; * // j11 += dNdr_1stOrder * pp[i][0]; * // j12 += dNdr_1stOrder * pp[i][1]; * // j21 += dNds_1stOrder * pp[i][0]; * // j22 += dNds_1stOrder * pp[i][1]; * //} * * for (int i = 0; i < nno; i++) * { * j11 += dNdr[i] * pp[i][0]; * j12 += dNdr[i] * pp[i][1]; * j21 += dNds[i] * pp[i][0]; * j22 += dNds[i] * pp[i][1]; * } * // ヤコビアン * double detj = j11 * j22 - j12 * j21; * detjsum += detj * weight; * //System.Diagnostics.Debug.WriteLine("det:{0}", detj); * * // gradr[0] : gradrのx成分 grad[1] : gradrのy成分 * // grads[0] : gradsのx成分 grads[1] : gradsのy成分 * double[] gradr = new double[2]; * double[] grads = new double[2]; * gradr[0] = j22 / detj; * gradr[1] = - j21 / detj; * grads[0] = - j12 / detj; * grads[1] = j11 / detj; * * // 形状関数のx, y方向微分 * double[,] dNdX = new double[ndim, nno]; * for (int i = 0; i < nno; i++) * { * for (int direction = 0; direction < ndim; direction++) * { * dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction]; * } * } * * // 汎関数 * double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno] * - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno]; * emat[ino, jno] += detj * weight * functional; * } * } * //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum); * } * } * * // 要素剛性行列にマージする * for (int ino = 0; ino < nno; ino++) * { * int iNodeNumber = no_c[ino]; * if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; * int inoGlobal = toSorted[iNodeNumber]; * for (int jno = 0; jno < nno; jno++) * { * int jNodeNumber = no_c[jno]; * if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; * int jnoGlobal = toSorted[jNodeNumber]; * * mat[inoGlobal, jnoGlobal] += emat[ino, jno]; * } * } * } */ /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 new double[] { 0, -1.0 }, //4 new double[] { 1.0, 0 }, //5 new double[] { 0, 1.0 }, //6 new double[] { -1.0, 0 }, //7 }; // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] Ni_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.25 * ri * ri * si; Ni_a[i, 1] = 0.25 * ri * ri; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.25 * ri * si; Ni_a[i, 4] = 0.25 * ri * si * si; Ni_a[i, 5] = 0.25 * si * si; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = -0.25; } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = -0.5 * si; Ni_a[i, 1] = -0.5; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = 0.0; Ni_a[i, 5] = 0.0; Ni_a[i, 6] = 0.5 * si; Ni_a[i, 7] = 0.5; } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.0; Ni_a[i, 1] = 0.0; Ni_a[i, 2] = 0.5 * ri; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = -0.5 * ri; Ni_a[i, 5] = -0.5; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = 0.5; } // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNidr_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri; // r dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.25 * ri * si * si; // s^2 dNidr_a[i, 6] = 0.25 * ri * si; // s dNidr_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = -1.0; // r dNidr_a[i, 3] = -si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.0; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.0; // 1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.0; // r dNidr_a[i, 3] = 0.0; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = -0.5 * ri; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.5 * ri; // 1 } // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNids_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.25 * ri * ri * si; // r^2 dNids_a[i, 2] = 0.25 * ri * si; // r dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.25 * 2.0 * si * si; // s dNids_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = -0.5 * si; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = 0.0; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.0; // s dNids_a[i, 7] = 0.5 * si; //1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.0; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = -ri; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = -1.0; // s dNids_a[i, 7] = 0.0; //1 } // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; // ∫N N dxdy double[,] integralN = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralN[ino, jno] = lx * ly / 4.0 * ( // r^4s^2 4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3] + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6]) // r^4 + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1] // r^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4] // s^4 + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5] // s^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7]) // 1 + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7] ); integralDNDX[0, ino, jno] = ly / lx * ( // r^4s^2 4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2] + dNidr_a[ino, 3] * dNidr_a[jno, 3] + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4] // s^4 + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7]) // 1 + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7] ); integralDNDX[1, ino, jno] = lx / ly * ( // r^4s^2 4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2] + dNids_a[ino, 3] * dNids_a[jno, 3] + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4] // s^4 + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7]) // 1 + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7] ); } } // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_SecondOrder; //6; // 2次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // 形状関数の微分の係数を求める // dndxC[ino,n,k] ino節点のn方向微分のLk(k面積座標)の係数 // dNino/dn = dndxC[ino, n, 0] * L0 + dndxC[ino, n, 1] * L1 + dndxC[ino, n, 2] * L2 + dndxC[ino, n, 3] double[, ,] dndxC = new double[nno, ndim, vertexCnt + 1] { { {4.0 * dldx[0, 0], 0.0, 0.0, -1.0 * dldx[0, 0]}, {4.0 * dldx[0, 1], 0.0, 0.0, -1.0 * dldx[0, 1]}, }, { {0.0, 4.0 * dldx[1, 0], 0.0, -1.0 * dldx[1, 0]}, {0.0, 4.0 * dldx[1, 1], 0.0, -1.0 * dldx[1, 1]}, }, { {0.0, 0.0, 4.0 * dldx[2, 0], -1.0 * dldx[2, 0]}, {0.0, 0.0, 4.0 * dldx[2, 1], -1.0 * dldx[2, 1]}, }, { {4.0 * dldx[1, 0], 4.0 * dldx[0, 0], 0.0, 0.0}, {4.0 * dldx[1, 1], 4.0 * dldx[0, 1], 0.0, 0.0}, }, { {0.0, 4.0 * dldx[2, 0], 4.0 * dldx[1, 0], 0.0}, {0.0, 4.0 * dldx[2, 1], 4.0 * dldx[1, 1], 0.0}, }, { {4.0 * dldx[2, 0], 0.0, 4.0 * dldx[0, 0], 0.0}, {4.0 * dldx[2, 1], 0.0, 4.0 * dldx[0, 1], 0.0}, }, }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int n = 0; n < ndim; n++) { for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[n, ino, jno] = area / 6.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 1] + dndxC[ino, n, 2] * dndxC[jno, n, 2]) + area / 12.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 1] + dndxC[ino, n, 0] * dndxC[jno, n, 2] + dndxC[ino, n, 1] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 2] + dndxC[ino, n, 2] * dndxC[jno, n, 0] + dndxC[ino, n, 2] * dndxC[jno, n, 1]) + area / 3.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 3] + dndxC[ino, n, 1] * dndxC[jno, n, 3] + dndxC[ino, n, 2] * dndxC[jno, n, 3] + dndxC[ino, n, 3] * dndxC[jno, n, 0] + dndxC[ino, n, 3] * dndxC[jno, n, 1] + dndxC[ino, n, 3] * dndxC[jno, n, 2]) + area * dndxC[ino, n, 3] * dndxC[jno, n, 3]; } } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 6.0 * area / 180.0, -1.0 * area / 180.0, -1.0 * area / 180.0, 0.0, -4.0 * area / 180.0, 0.0}, { -1.0 * area / 180.0, 6.0 * area / 180.0, -1.0 * area / 180.0, 0.0, 0.0, -4.0 * area / 180.0}, { -1.0 * area / 180.0, -1.0 * area / 180.0, 6.0 * area / 180.0, -4.0 * area / 180.0, 0.0, 0.0}, { 0.0, 0.0, -4.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0, 16.0 * area / 180.0}, { -4.0 * area / 180.0, 0.0, 0.0, 16.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0}, { 0.0, -4.0 * area / 180.0, 0.0, 16.0 * area / 180.0, 16.0 * area / 180.0, 32.0 * area / 180.0}, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/// <summary> /// コンストラクタ /// </summary> /// <param name="lsSolverDv">リニアシステムソルバー区分</param> /// <param name="text">表示テキスト</param> public LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv, string text) { LsEqnSolverDv = lsEqnSolverDv; Text = text; }
/// <summary> /// 1Dヘルムホルツ方程式固有値問題の要素行列を加算する /// </summary> /// <param name="waveLength">波長(E面の場合のみ使用する)</param> /// <param name="element">線要素</param> /// <param name="coords">座標リスト</param> /// <param name="toSorted">節点番号→ソート済み節点インデックスマップ</param> /// <param name="Medias">媒質情報リスト</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="txx_1d">txx行列</param> /// <param name="ryy_1d">ryy行列</param> /// <param name="uzz_1d">uzz行列</param> public static void AddElementMatOf1dEigenValueProblem( double waveLength, FemLineElement element, IList<double> coords, Dictionary<int, int> toSorted, MediaInfo[] Medias, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyDoubleMatrix txx_1d, ref MyDoubleMatrix ryy_1d, ref MyDoubleMatrix uzz_1d) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 2次線要素 const int nno = Constants.LineNodeCnt_SecondOrder; // 3; int[] nodeNumbers = element.NodeNumbers; System.Diagnostics.Debug.Assert(nno == nodeNumbers.Length); // 座標の取得 double[] elementCoords = new double[nno]; for (int n = 0; n < nno; n++) { int nodeIndex = nodeNumbers[n] - 1; elementCoords[n] = coords[nodeIndex]; } // 線要素の長さ double elen = Math.Abs(elementCoords[1] - elementCoords[0]); // 媒質インデックス int mediaIndex = element.MediaIndex; // 媒質 MediaInfo media = Medias[mediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); double[,] integralN = new double[nno, nno] { { 4.0 / 30.0 * elen, -1.0 / 30.0 * elen, 2.0 / 30.0 * elen }, { -1.0 / 30.0 * elen, 4.0 / 30.0 * elen, 2.0 / 30.0 * elen }, { 2.0 / 30.0 * elen, 2.0 / 30.0 * elen, 16.0 / 30.0 * elen }, }; double[,] integralDNDY = new double[nno, nno] { { 7.0 / (3.0 * elen), 1.0 / (3.0 * elen), -8.0 / (3.0 * elen) }, { 1.0 / (3.0 * elen), 7.0 / (3.0 * elen), -8.0 / (3.0 * elen) }, { -8.0 / (3.0 * elen), -8.0 / (3.0 * elen), 16.0 / (3.0 * elen) }, }; for (int ino = 0; ino < nno; ino++) { int inoBoundary = nodeNumbers[ino]; int inoSorted; if (!toSorted.ContainsKey(inoBoundary)) continue; inoSorted = toSorted[inoBoundary]; for (int jno = 0; jno < nno; jno++) { int jnoBoundary = nodeNumbers[jno]; int jnoSorted; if (!toSorted.ContainsKey(jnoBoundary)) continue; jnoSorted = toSorted[jnoBoundary]; // 対称バンド行列対応 if (ryy_1d is MyDoubleSymmetricBandMatrix && jnoSorted < inoSorted) { continue; } double e_txx_1d_inojno = media_P[0, 0] * integralDNDY[ino, jno]; double e_ryy_1d_inojno = media_P[1, 1] * integralN[ino, jno]; double e_uzz_1d_inojno = media_Q[2, 2] * integralN[ino, jno]; //txx_1d[inoSorted, jnoSorted] += e_txx_1d_inojno; //ryy_1d[inoSorted, jnoSorted] += e_ryy_1d_inojno; //uzz_1d[inoSorted, jnoSorted] += e_uzz_1d_inojno; txx_1d._body[txx_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_txx_1d_inojno; ryy_1d._body[ryy_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_ryy_1d_inojno; uzz_1d._body[uzz_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_uzz_1d_inojno; } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WaveModeDV WaveModeDv, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_SecondOrder; //6; // 2次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; if (WaveModeDv == FemSolver.WaveModeDV.TE) { media_P = media.P; media_Q = media.Q; } else if (WaveModeDv == FemSolver.WaveModeDV.TM) { media_P = media.Q; media_Q = media.P; } else { System.Diagnostics.Debug.Assert(false); } // [p]は逆数をとる media_P = MyMatrixUtil.matrix_Inverse(media_P); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //Console.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // 形状関数の微分の係数を求める // dndxC[ino,n,k] ino節点のn方向微分のLk(k面積座標)の係数 // dNino/dn = dndxC[ino, n, 0] * L0 + dndxC[ino, n, 1] * L1 + dndxC[ino, n, 2] * L2 + dndxC[ino, n, 3] double[, ,] dndxC = new double[nno, ndim, vertexCnt + 1] { { {4.0 * dldx[0, 0], 0.0, 0.0, -1.0 * dldx[0, 0]}, {4.0 * dldx[0, 1], 0.0, 0.0, -1.0 * dldx[0, 1]}, }, { {0.0, 4.0 * dldx[1, 0], 0.0, -1.0 * dldx[1, 0]}, {0.0, 4.0 * dldx[1, 1], 0.0, -1.0 * dldx[1, 1]}, }, { {0.0, 0.0, 4.0 * dldx[2, 0], -1.0 * dldx[2, 0]}, {0.0, 0.0, 4.0 * dldx[2, 1], -1.0 * dldx[2, 1]}, }, { {4.0 * dldx[1, 0], 4.0 * dldx[0, 0], 0.0, 0.0}, {4.0 * dldx[1, 1], 4.0 * dldx[0, 1], 0.0, 0.0}, }, { {0.0, 4.0 * dldx[2, 0], 4.0 * dldx[1, 0], 0.0}, {0.0, 4.0 * dldx[2, 1], 4.0 * dldx[1, 1], 0.0}, }, { {4.0 * dldx[2, 0], 0.0, 4.0 * dldx[0, 0], 0.0}, {4.0 * dldx[2, 1], 0.0, 4.0 * dldx[0, 1], 0.0}, }, }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int n = 0; n < ndim; n++) { for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[n, ino, jno] = area / 6.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 1] + dndxC[ino, n, 2] * dndxC[jno, n, 2]) + area / 12.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 1] + dndxC[ino, n, 0] * dndxC[jno, n, 2] + dndxC[ino, n, 1] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 2] + dndxC[ino, n, 2] * dndxC[jno, n, 0] + dndxC[ino, n, 2] * dndxC[jno, n, 1]) + area / 3.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 3] + dndxC[ino, n, 1] * dndxC[jno, n, 3] + dndxC[ino, n, 2] * dndxC[jno, n, 3] + dndxC[ino, n, 3] * dndxC[jno, n, 0] + dndxC[ino, n, 3] * dndxC[jno, n, 1] + dndxC[ino, n, 3] * dndxC[jno, n, 2]) + area * dndxC[ino, n, 3] * dndxC[jno, n, 3]; } } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 6.0 * area / 180.0, -1.0 * area / 180.0, -1.0 * area / 180.0, 0.0, -4.0 * area / 180.0, 0.0}, { -1.0 * area / 180.0, 6.0 * area / 180.0, -1.0 * area / 180.0, 0.0, 0.0, -4.0 * area / 180.0}, { -1.0 * area / 180.0, -1.0 * area / 180.0, 6.0 * area / 180.0, -4.0 * area / 180.0, 0.0, 0.0}, { 0.0, 0.0, -4.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0, 16.0 * area / 180.0}, { -4.0 * area / 180.0, 0.0, 0.0, 16.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0}, { 0.0, -4.0 * area / 180.0, 0.0, 16.0 * area / 180.0, 16.0 * area / 180.0, 32.0 * area / 180.0}, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary<uint, int> inoGlobalDic = new Dictionary<uint,int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray<uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// 1Dヘルムホルツ方程式固有値問題の要素行列を加算する /// </summary> /// <param name="waveLength">波長(E面の場合のみ使用する)</param> /// <param name="element">線要素</param> /// <param name="coords">座標リスト</param> /// <param name="toSorted">節点番号→ソート済み節点インデックスマップ</param> /// <param name="Medias">媒質情報リスト</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="txx_1d">txx行列</param> /// <param name="ryy_1d">ryy行列</param> /// <param name="uzz_1d">uzz行列</param> public static void AddElementMatOf1dEigenValueProblem( double waveLength, FemLineElement element, IList <double> coords, Dictionary <int, int> toSorted, MediaInfo[] Medias, FemSolver.WaveModeDV WaveModeDv, ref MyDoubleMatrix txx_1d, ref MyDoubleMatrix ryy_1d, ref MyDoubleMatrix uzz_1d) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 1次線要素 const int nno = Constants.LineNodeCnt_FirstOrder; // 2; int[] nodeNumbers = element.NodeNumbers; System.Diagnostics.Debug.Assert(nno == nodeNumbers.Length); // 座標の取得 double[] elementCoords = new double[nno]; for (int n = 0; n < nno; n++) { int nodeIndex = nodeNumbers[n] - 1; elementCoords[n] = coords[nodeIndex]; } // 線要素の長さ double elen = Math.Abs(elementCoords[1] - elementCoords[0]); // 媒質インデックス int mediaIndex = element.MediaIndex; // 媒質 MediaInfo media = Medias[mediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WaveModeDv, out media_P, out media_Q); double[,] integralN = new double[nno, nno] { { elen / 3.0, elen / 6.0 }, { elen / 6.0, elen / 3.0 }, }; double[,] integralDNDY = new double[nno, nno] { { 1.0 / elen, -1.0 / elen }, { -1.0 / elen, 1.0 / elen }, }; for (int ino = 0; ino < nno; ino++) { int inoBoundary = nodeNumbers[ino]; int inoSorted; if (!toSorted.ContainsKey(inoBoundary)) { continue; } inoSorted = toSorted[inoBoundary]; for (int jno = 0; jno < nno; jno++) { int jnoBoundary = nodeNumbers[jno]; int jnoSorted; if (!toSorted.ContainsKey(jnoBoundary)) { continue; } jnoSorted = toSorted[jnoBoundary]; // 対称バンド行列対応 if (ryy_1d is MyDoubleSymmetricBandMatrix && jnoSorted < inoSorted) { continue; } double e_txx_1d_inojno = media_P[0, 0] * integralDNDY[ino, jno]; double e_ryy_1d_inojno = media_P[1, 1] * integralN[ino, jno]; double e_uzz_1d_inojno = media_Q[2, 2] * integralN[ino, jno]; //txx_1d[inoSorted, jnoSorted] += e_txx_1d_inojno; //ryy_1d[inoSorted, jnoSorted] += e_ryy_1d_inojno; //uzz_1d[inoSorted, jnoSorted] += e_uzz_1d_inojno; txx_1d._body[txx_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_txx_1d_inojno; ryy_1d._body[ryy_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_ryy_1d_inojno; uzz_1d._body[uzz_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_uzz_1d_inojno; } } }
/* 数値積分版 /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WaveModeDv WaveModeDv, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; if (WaveModeDv == FemSolver.WaveModeDv.TE) { media_P = media.P; media_Q = media.Q; } else if (WaveModeDv == FemSolver.WaveModeDv.TM) { media_P = media.Q; media_Q = media.P; } else { System.Diagnostics.Debug.Assert(false); } // [p]は逆数をとる media_P = MyMatrixUtil.matrix_Inverse(media_P); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } //// 四角形の辺の長さを求める //double[] le = new double[4]; //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 new double[] { 0, -1.0}, //4 new double[] { 1.0, 0}, //5 new double[] { 0, 1.0}, //6 new double[] {-1.0, 0}, //7 }; // ガウスルジャンドルの積分公式 double[][] g_pts = new double[5][] { // ポイント(ξ: [-1 +1]区間)、重み new double[] { -0.90617985, 0.23692689}, new double[] { -0.53846931, 0.47862867}, new double[] {0.0, 0.56888889}, new double[] {0.53846931, 0.47862867}, new double[] {0.90617985, 0.23692689} }; // 要素剛性行列を作る double[,] emat = new Complex[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = 0.0; double detjsum = 0; //check foreach (double[] s_g_pt in g_pts) { foreach (double[] r_g_pt in g_pts) { // 積分点 double r = r_g_pt[0]; double s = s_g_pt[0]; // 重み(2次元) double weight = r_g_pt[1] * s_g_pt[1]; // 形状関数 double[] N = new double[nno]; // 形状関数のr, s方向微分 double[] dNdr = new double[nno]; double[] dNds = new double[nno]; // 節点0~3 : 四角形の頂点 for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0); // 形状関数のr方向微分 dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s); // 形状関数のs方向微分 dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s); } // 節点4,6 : r方向辺上中点 foreach (int i in new int[]{ 4, 6}) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s); // 形状関数のr方向微分 dNdr[i] = -1.0 * r * (1.0 + si * s); // 形状関数のs方向微分 dNds[i] = 0.5 * si * (1.0 - r * r); } // 節点5,7 : s方向辺上中点 foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s); // 形状関数のr方向微分 dNdr[i] = 0.5 * ri * (1.0 - s * s); // 形状関数のs方向微分 dNds[i] = -1.0 * s * (1.0 + ri * r); } // ヤコビアン行列 double j11; double j12; double j21; double j22; j11 = 0; j12 = 0; j21 = 0; j22 = 0; //for (int i = 0; i < vertexCnt; i++) //{ // // 頂点の座標の微分 // // 座標の形状関数は一次四角形のものを使用する // // 節点の局所座標 // double ri = n_pts[i][0]; // double si = n_pts[i][1]; // double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s); // double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si; // j11 += dNdr_1stOrder * pp[i][0]; // j12 += dNdr_1stOrder * pp[i][1]; // j21 += dNds_1stOrder * pp[i][0]; // j22 += dNds_1stOrder * pp[i][1]; //} for (int i = 0; i < nno; i++) { j11 += dNdr[i] * pp[i][0]; j12 += dNdr[i] * pp[i][1]; j21 += dNds[i] * pp[i][0]; j22 += dNds[i] * pp[i][1]; } // ヤコビアン double detj = j11 * j22 - j12 * j21; detjsum += detj * weight; //System.Diagnostics.Debug.WriteLine("det:{0}", detj); // gradr[0] : gradrのx成分 grad[1] : gradrのy成分 // grads[0] : gradsのx成分 grads[1] : gradsのy成分 double[] gradr = new double[2]; double[] grads = new double[2]; gradr[0] = j22 / detj; gradr[1] = - j21 / detj; grads[0] = - j12 / detj; grads[1] = j11 / detj; // 形状関数のx, y方向微分 double[,] dNdX = new double[ndim, nno]; for (int i = 0; i < nno; i++) { for (int direction = 0; direction < ndim; direction++) { dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction]; } } // 汎関数 double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno] - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno]; emat[ino, jno] += detj * weight * functional; } } //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum); } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; mat[inoGlobal, jnoGlobal] += emat[ino, jno]; } } } */ /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 new double[] { 0, -1.0}, //4 new double[] { 1.0, 0}, //5 new double[] { 0, 1.0}, //6 new double[] {-1.0, 0}, //7 }; // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] Ni_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.25 * ri * ri * si; Ni_a[i, 1] = 0.25 * ri * ri; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.25 * ri * si; Ni_a[i, 4] = 0.25 * ri * si * si; Ni_a[i, 5] = 0.25 * si * si; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = -0.25; } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = -0.5 * si; Ni_a[i, 1] = -0.5; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = 0.0; Ni_a[i, 5] = 0.0; Ni_a[i, 6] = 0.5 * si; Ni_a[i, 7] = 0.5; } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.0; Ni_a[i, 1] = 0.0; Ni_a[i, 2] = 0.5 * ri; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = -0.5 * ri; Ni_a[i, 5] = -0.5; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = 0.5; } // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNidr_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri; // r dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.25 * ri * si * si; // s^2 dNidr_a[i, 6] = 0.25 * ri * si; // s dNidr_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = -1.0; // r dNidr_a[i, 3] = -si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.0; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.0; // 1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.0; // r dNidr_a[i, 3] = 0.0; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = -0.5 * ri; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.5 * ri; // 1 } // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNids_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.25 * ri * ri * si; // r^2 dNids_a[i, 2] = 0.25 * ri * si; // r dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.25 * 2.0 * si * si; // s dNids_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = -0.5 * si; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = 0.0; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.0; // s dNids_a[i, 7] = 0.5 * si; //1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.0; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = -ri; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = -1.0; // s dNids_a[i, 7] = 0.0; //1 } // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; // ∫N N dxdy double[,] integralN = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralN[ino, jno] = lx * ly / 4.0 * ( // r^4s^2 4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3] + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6]) // r^4 + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1] // r^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4] // s^4 + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5] // s^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7]) // 1 + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7] ); integralDNDX[0, ino, jno] = ly / lx * ( // r^4s^2 4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2] + dNidr_a[ino, 3] * dNidr_a[jno, 3] + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4] // s^4 + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7]) // 1 + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7] ); integralDNDX[1, ino, jno] = lx / ly * ( // r^4s^2 4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2] + dNids_a[ino, 3] * dNids_a[jno, 3] + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4] // s^4 + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7]) // 1 + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7] ); } } // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/// <summary> /// 1Dヘルムホルツ方程式固有値問題の要素行列を加算する /// </summary> /// <param name="element">線要素</param> /// <param name="coords">座標リスト</param> /// <param name="toSorted">節点番号→ソート済み節点インデックスマップ</param> /// <param name="Medias">媒質情報リスト</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="txx_1d">txx行列</param> /// <param name="ryy_1d">ryy行列</param> /// <param name="uzz_1d">uzz行列</param> public static void AddElementMatOf1dEigenValueProblem( FemLineElement element, IList<double> coords, Dictionary<int, int> toSorted, MediaInfo[] Medias, FemSolver.WaveModeDV WaveModeDv, ref MyDoubleMatrix txx_1d, ref MyDoubleMatrix ryy_1d, ref MyDoubleMatrix uzz_1d) { // 1次線要素 const int nno = Constants.LineNodeCnt_FirstOrder; // 2; int[] nodeNumbers = element.NodeNumbers; System.Diagnostics.Debug.Assert(nno == nodeNumbers.Length); // 座標の取得 double[] elementCoords = new double[nno]; for (int n = 0; n < nno; n++) { int nodeIndex = nodeNumbers[n] - 1; elementCoords[n] = coords[nodeIndex]; } // 線要素の長さ double elen = Math.Abs(elementCoords[1] - elementCoords[0]); // 媒質インデックス int mediaIndex = element.MediaIndex; // 媒質 MediaInfo media = Medias[mediaIndex]; double[,] media_P = null; double[,] media_Q = null; if (WaveModeDv == FemSolver.WaveModeDV.TE) { media_P = media.P; media_Q = media.Q; } else if (WaveModeDv == FemSolver.WaveModeDV.TM) { media_P = media.Q; media_Q = media.P; } else { System.Diagnostics.Debug.Assert(false); } media_P = MyMatrixUtil.matrix_Inverse(media_P); double[,] integralN = new double[nno, nno] { { elen / 3.0, elen / 6.0 }, { elen / 6.0, elen / 3.0 }, }; double[,] integralDNDY = new double[nno, nno] { { 1.0 / elen, -1.0 / elen }, { -1.0 / elen, 1.0 / elen }, }; for (int ino = 0; ino < nno; ino++) { int inoBoundary = nodeNumbers[ino]; int inoSorted; if (!toSorted.ContainsKey(inoBoundary)) continue; inoSorted = toSorted[inoBoundary]; for (int jno = 0; jno < nno; jno++) { int jnoBoundary = nodeNumbers[jno]; int jnoSorted; if (!toSorted.ContainsKey(jnoBoundary)) continue; jnoSorted = toSorted[jnoBoundary]; // 対称バンド行列対応 if (ryy_1d is MyDoubleSymmetricBandMatrix && jnoSorted < inoSorted) { continue; } double e_txx_1d_inojno = media_P[0, 0] * integralDNDY[ino, jno]; double e_ryy_1d_inojno = media_P[1, 1] * integralN[ino, jno]; double e_uzz_1d_inojno = media_Q[2, 2] * integralN[ino, jno]; //txx_1d[inoSorted, jnoSorted] += e_txx_1d_inojno; //ryy_1d[inoSorted, jnoSorted] += e_ryy_1d_inojno; //uzz_1d[inoSorted, jnoSorted] += e_uzz_1d_inojno; txx_1d._body[txx_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_txx_1d_inojno; ryy_1d._body[ryy_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_ryy_1d_inojno; uzz_1d._body[uzz_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_uzz_1d_inojno; } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_FirstOrder; //3; // 1次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[0, ino, jno] = area * dldx[ino, 0] * dldx[jno, 0]; integralDNDX[1, ino, jno] = area * dldx[ino, 1] * dldx[jno, 1]; } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { area / 6.0, area / 12.0, area / 12.0 }, { area / 12.0, area / 6.0, area / 12.0 }, { area / 12.0, area / 12.0, area / 6.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/// <summary> /// 入力ファイル作成時に決まらない情報を更新する /// </summary> /// <param name="filename">ファイル名(*.fem)</param> /// <param name="firstWaveLength">計算対象開始波長</param> /// <param name="lastWaveLength">計算対象終了波長</param> /// <param name="calcCnt">計算対象周波数件数</param> /// <param name="lsEqnSolverDv">線形方程式解法区分</param> public static bool UpdateToFile(string filename, double firstWaveLength, double lastWaveLength, int calcCnt, FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv) { bool success = false; if (!File.Exists(filename)) { return success; } IList<FemNode> nodes = null; IList<FemElement> elements = null; IList<IList<int>> ports = null; IList<int> forceBCNodes = null; int incidentPortNo = 0; MediaInfo[] medias = null; double dummyFirstWaveLength = 0.0; double dummyLastWaveLength = 0.0; int dummyCalcCnt = 0; FemSolver.LinearSystemEqnSoverDV dummyLsEqnSolverDv = FemSolver.LinearSystemEqnSoverDV.PCOCG; bool loadRet = FemInputDatFile.LoadFromFile( filename, out nodes, out elements, out ports, out forceBCNodes, out incidentPortNo, out medias, out dummyFirstWaveLength, out dummyLastWaveLength, out dummyCalcCnt, out dummyLsEqnSolverDv ); if (loadRet) { SaveToFile( filename, nodes, elements, ports, forceBCNodes, incidentPortNo, medias, firstWaveLength, lastWaveLength, calcCnt, lsEqnSolverDv ); success = true; } return success; }
/// <summary> /// 初期化処理 /// </summary> private void init() { CadModeRadioButtons = new RadioButton[] { radioBtnNone, radioBtnLocation, radioBtnArea, radioBtnPort, radioBtnErase, radioBtnIncidentPort, radioBtnPortNumbering }; // Cadモードをラジオボタンに紐づける CadLogic.CadModeType[] cadModeTypeForRadioButtons = new CadLogic.CadModeType[] { CadLogic.CadModeType.None, CadLogic.CadModeType.Location, CadLogic.CadModeType.Area, CadLogic.CadModeType.Port, CadLogic.CadModeType.Erase, CadLogic.CadModeType.IncidentPort, CadLogic.CadModeType.PortNumbering }; System.Diagnostics.Debug.Assert(CadModeRadioButtons.Length == cadModeTypeForRadioButtons.Length); for (int i = 0; i < CadModeRadioButtons.Length; i++) { CadModeRadioButtons[i].Tag = cadModeTypeForRadioButtons[i]; } // エリア選択描画モードタイプコンボボックスのItemにCadモードを紐づける CadModeTypeStruct[] cadModeTypeStructsForImgCBoxCadModeArea = new CadModeTypeStruct[] { new CadModeTypeStruct("自由描画", CadLogic.CadModeType.AreaFH), new CadModeTypeStruct("長方形描画", CadLogic.CadModeType.Area), new CadModeTypeStruct("直線描画", CadLogic.CadModeType.AreaLine), new CadModeTypeStruct("楕円描画", CadLogic.CadModeType.AreaEllipse) }; // コンボボックスのアイテムをクリア imgcbxCadModeArea.Items.Clear(); foreach (CadModeTypeStruct cadModeTypeStruct in cadModeTypeStructsForImgCBoxCadModeArea) { // コンボボックスにアイテムを追加 imgcbxCadModeArea.Items.Add(cadModeTypeStruct); foreach (CadLogic.CadModeType defCadMode in cadModeTypeForRadioButtons) { if (defCadMode == cadModeTypeStruct.CadMode) { //この時点ではCadLogicがないのでイベントハンドラの実行を抑制する imgcbxCadModeArea.SelectedIndexChanged -= imgcbxCadModeArea_SelectedIndexChanged; // 選択する imgcbxCadModeArea.SelectedItem = cadModeTypeStruct; // イベントハンドラを再設定 imgcbxCadModeArea.SelectedIndexChanged += imgcbxCadModeArea_SelectedIndexChanged; } } } imgcbxCadModeArea.Visible = false; // 消しゴム描画モードタイプコンボボックスのItemにCadモードを紐づける CadModeTypeStruct[] cadModeTypeStructsForImgCBoxCadModeErase = new CadModeTypeStruct[] { new CadModeTypeStruct("自由消去", CadLogic.CadModeType.EraseFH), new CadModeTypeStruct("長方形消去", CadLogic.CadModeType.Erase), new CadModeTypeStruct("直線消去", CadLogic.CadModeType.EraseLine) }; // コンボボックスのアイテムをクリア imgcbxCadModeErase.Items.Clear(); foreach (CadModeTypeStruct cadModeTypeStruct in cadModeTypeStructsForImgCBoxCadModeErase) { // コンボボックスにアイテムを追加 imgcbxCadModeErase.Items.Add(cadModeTypeStruct); foreach (CadLogic.CadModeType defCadMode in cadModeTypeForRadioButtons) { if (defCadMode == cadModeTypeStruct.CadMode) { //この時点ではCadLogicがないのでイベントハンドラの実行を抑制する imgcbxCadModeErase.SelectedIndexChanged -= imgcbxCadModeErase_SelectedIndexChanged; // 選択する imgcbxCadModeErase.SelectedItem = cadModeTypeStruct; // イベントハンドラを再設定 imgcbxCadModeErase.SelectedIndexChanged += imgcbxCadModeErase_SelectedIndexChanged; } } } imgcbxCadModeErase.Visible = false; MediaRadioButtons = new RadioButton[] { radioBtnMedia0, // 真空 radioBtnMedia1, // 誘電体1 radioBtnMedia2 // 誘電体2 }; EpsTextBoxes = new TextBox[] { textBoxEps0, // 真空 textBoxEps1, // 誘電体1 textBoxEps2 // 誘電体2 }; System.Diagnostics.Debug.Assert(MediaRadioButtons.Length == Constants.MaxMediaCount); System.Diagnostics.Debug.Assert(EpsTextBoxes.Length == Constants.MaxMediaCount); panelMedia.Visible = false; btnLoadCancel.Visible = false; CadLgc = new CadLogic(CadPanel); CadLgc.Change += new CadLogic.ChangeDeleagte(CadLgc_Change); Solver = new FemSolver(); PostPro = new FemPostProLogic(); //TEST 4画面表示 FValuePanelIndex = FValuePanelFieldDV_ValueDVPairList.Length; //0; // 等高線図パネルインデックス変更時の処理 changeFValuePanelIndexProc(false); // アプリケーションの終了イベントハンドラを設定する AppDomain.CurrentDomain.ProcessExit += (sender, e) => { System.Diagnostics.Debug.WriteLine("Process exiting"); //System.Diagnostics.Debug.WriteLine("Process exiting"); // フォームの破棄処理を呼び出す this.Dispose(); }; // パネルサイズを記憶する savePanelSize(); //this.DoubleBuffered = true; // ダブルバッファ制御用のプロパティを強制的に取得する System.Reflection.PropertyInfo p; p = typeof(System.Windows.Forms.Control).GetProperty( "DoubleBuffered", System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.Instance); // ダブルバッファを有効にする p.SetValue(CadPanel, true, null); p.SetValue(FValuePanel, true, null); // フォームのタイトルを退避 TitleBaseName = this.Text + " " + MyUtilLib.MyUtil.getAppVersion(); // ファイル名付きフォームタイトルを設定 setFrmTitle(); // GUI初期化 resetGUI(); }
/// <summary> /// 周期構造導波路固有値問題用FEM行列の追加 /// </summary> /// <param name="isYDirectionPeriodic"></param> /// <param name="waveLength"></param> /// <param name="nodeCntPeriodic"></param> /// <param name="freeNodeCntPeriodic_0"></param> /// <param name="toSortedPeriodic"></param> /// <param name="element"></param> /// <param name="Nodes"></param> /// <param name="Medias"></param> /// <param name="ForceNodeNumberH"></param> /// <param name="WaveModeDv"></param> /// <param name="KMat"></param> public static void AddElementMatPeriodic( bool isYDirectionPeriodic, bool isSVEA, double waveLength, int nodeCntPeriodic, int freeNodeCntPeriodic_0, Dictionary <int, int> toSortedPeriodic, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WaveModeDV WaveModeDv, ref double[] KMat, ref double[] CMat, ref double[] MMat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_FirstOrder; //3; // 1次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WaveModeDv, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[,,] integralDNDX = new double[ndim, nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[0, ino, jno] = area * dldx[ino, 0] * dldx[jno, 0]; integralDNDX[1, ino, jno] = area * dldx[ino, 1] * dldx[jno, 1]; } } // ∫(dLi/dx)Lj dxdy // ∫(dLi/dy)Lj dxdy double[, ,] integralDNDXL = new double[2, 3, 3]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDXL[0, ino, jno] = area * dldx[ino, 0] / 3.0; integralDNDXL[1, ino, jno] = area * dldx[ino, 1] / 3.0; } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { area / 6.0, area / 12.0, area / 12.0 }, { area / 12.0, area / 6.0, area / 12.0 }, { area / 12.0, area / 12.0, area / 6.0 }, }; // 要素剛性行列を作る double[,] eKMat = new double[nno, nno]; double[,] eCMat = new double[nno, nno]; double[,] eMMat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { eKMat[ino, jno] = -media_P[0, 0] * integralDNDX[1, ino, jno] - media_P[1, 1] * integralDNDX[0, ino, jno] + k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; if (isSVEA) { if (isYDirectionPeriodic) { eCMat[ino, jno] = -media.P[1, 1] * (integralDNDXL[1, ino, jno] - integralDNDXL[1, jno, ino]); } else { eCMat[ino, jno] = -media.P[1, 1] * (integralDNDXL[0, ino, jno] - integralDNDXL[0, jno, ino]); } // 要素質量行列 eMMat[ino, jno] = media.P[1, 1] * integralN[ino, jno]; } } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSortedPeriodic[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSortedPeriodic[jNodeNumber]; KMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eKMat[ino, jno]; if (isSVEA) { CMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eCMat[ino, jno]; MMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eMMat[ino, jno]; } } } }
/// <summary> /// 初期化処理 /// </summary> private void init() { CadModeRadioButtons = new RadioButton[] { radioBtnNone, radioBtnArea, radioBtnMediaFill, radioBtnPort, radioBtnErase, radioBtnIncidentPort, radioBtnPortNumbering }; // Cadモードをラジオボタンに紐づける CadLogic.CadModeType[] cadModeTypeForRadioButtons = new CadLogic.CadModeType[] { CadLogic.CadModeType.None, CadLogic.CadModeType.Area, CadLogic.CadModeType.MediaFill, CadLogic.CadModeType.Port, CadLogic.CadModeType.Erase, CadLogic.CadModeType.IncidentPort, CadLogic.CadModeType.PortNumbering }; System.Diagnostics.Debug.Assert(CadModeRadioButtons.Length == cadModeTypeForRadioButtons.Length); for (int i = 0; i < CadModeRadioButtons.Length; i++) { CadModeRadioButtons[i].Tag = cadModeTypeForRadioButtons[i]; } MediaRadioButtons = new RadioButton[] { radioBtnMedia0, // 導体 radioBtnMedia1, // 真空 radioBtnMedia2, // 誘電体1 radioBtnMedia3 // 誘電体2 }; EpsTextBoxes = new TextBox[] { textBoxEps0, // 導体 textBoxEps1, // 真空 textBoxEps2, // 誘電体1 textBoxEps3 // 誘電体2 }; System.Diagnostics.Debug.Assert(MediaRadioButtons.Length == Constants.MaxMediaCount); System.Diagnostics.Debug.Assert(EpsTextBoxes.Length == Constants.MaxMediaCount); panelMedia.Visible = false; btnLoadCancel.Visible = false; CadLgc = new CadLogic(CadPanel); Solver = new FemSolver(); PostPro = new FemPostProLogic(); // アプリケーションの終了イベントハンドラを設定する AppDomain.CurrentDomain.ProcessExit += (sender, e) => { Console.WriteLine("Process exiting"); System.Diagnostics.Debug.WriteLine("Process exiting"); // フォームの破棄処理を呼び出す this.Dispose(); }; // パネルサイズを記憶する savePanelSize(); //this.DoubleBuffered = true; // ダブルバッファ制御用のプロパティを強制的に取得する System.Reflection.PropertyInfo p; p = typeof(System.Windows.Forms.Control).GetProperty( "DoubleBuffered", System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.Instance); // ダブルバッファを有効にする //SimpleOpenGlControlの場合は不要 //p.SetValue(CadPanel, true, null); p.SetValue(FValuePanel, true, null); // フォームのタイトルを退避 TitleBaseName = this.Text + " " + MyUtilLib.MyUtil.getAppVersion(); // ファイル名付きフォームタイトルを設定 setFrmTitle(); // GUI初期化 resetGUI(); }
/// <summary> /// Fem入力データをファイルから読み込み /// </summary> /// <param name="filename">ファイル名(*.fem)</param> /// <param name="nodes">節点リスト</param> /// <param name="elements">要素リスト</param> /// <param name="ports">ポートの節点番号リストのリスト</param> /// <param name="forceBCNodes">強制境界節点番号リスト</param> /// <param name="incidentPortNo">入射ポート番号</param> /// <param name="medias">媒質情報リスト</param> /// <param name="firstWaveLength">計算開始波長</param> /// <param name="lastWaveLength">計算終了波長</param> /// <param name="calcCnt">計算件数</param> /// <param name="wgStructureDv">導波路構造区分</param> /// <param name="waveModeDv">波のモード区分</param> /// <param name="lsEqnSoverDv">線形方程式解法区分</param> /// <param name="waveguideWidthForEPlane">導波管幅(E面解析用)</param> /// <returns></returns> public static bool LoadFromFile( string filename, out IList <FemNode> nodes, out IList <FemElement> elements, out IList <IList <int> > ports, out IList <int> forceBCNodes, out int incidentPortNo, out MediaInfo[] medias, out double firstWaveLength, out double lastWaveLength, out int calcCnt, out FemSolver.WGStructureDV wgStructureDv, out FemSolver.WaveModeDV waveModeDv, out FemSolver.LinearSystemEqnSoverDV lsEqnSoverDv, out double waveguideWidthForEPlane ) { int eNodeCnt = 0; nodes = new List <FemNode>(); elements = new List <FemElement>(); ports = new List <IList <int> >(); forceBCNodes = new List <int>(); incidentPortNo = 1; medias = new MediaInfo[Constants.MaxMediaCount]; for (int i = 0; i < medias.Length; i++) { MediaInfo media = new MediaInfo(); media.BackColor = CadLogic.MediaBackColors[i]; medias[i] = media; } firstWaveLength = 0.0; lastWaveLength = 0.0; calcCnt = 0; wgStructureDv = Constants.DefWGStructureDv; waveModeDv = Constants.DefWaveModeDv; lsEqnSoverDv = Constants.DefLsEqnSolverDv; waveguideWidthForEPlane = 0; if (!File.Exists(filename)) { return(false); } // 入力データ読み込み try { using (StreamReader sr = new StreamReader(filename)) { const char delimiter = ','; string line; string[] tokens; line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Nodes") { MessageBox.Show("節点情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int nodeCnt = int.Parse(tokens[1]); for (int i = 0; i < nodeCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 3) { MessageBox.Show("節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int no = int.Parse(tokens[0]); if (no != i + 1) { MessageBox.Show("節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } FemNode femNode = new FemNode(); femNode.No = no; femNode.Coord = new double[2]; femNode.Coord[0] = double.Parse(tokens[1]); femNode.Coord[1] = double.Parse(tokens[2]); nodes.Add(femNode); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Elements") { MessageBox.Show("要素情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int elementCnt = int.Parse(tokens[1]); for (int i = 0; i < elementCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if ((tokens.Length != 1 + Constants.TriNodeCnt_SecondOrder) && (tokens.Length != 2 + Constants.TriNodeCnt_SecondOrder) && // ver1.1.0.0で媒質インデックスを番号の後に挿入 (tokens.Length != 2 + Constants.QuadNodeCnt_SecondOrder_Type2) && (tokens.Length != 2 + Constants.TriNodeCnt_FirstOrder) && (tokens.Length != 2 + Constants.QuadNodeCnt_FirstOrder) ) { MessageBox.Show("要素情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int elemNo = int.Parse(tokens[0]); int mediaIndex = 0; int indexOffset = 1; // ver1.0.0.0 int workENodeCnt = Constants.TriNodeCnt_SecondOrder; if (tokens.Length == 1 + Constants.TriNodeCnt_SecondOrder) { // 媒質インデックスのない古い形式(ver1.0.0.0) } else { // ver1.1.0.0で媒質インデックスを追加 mediaIndex = int.Parse(tokens[1]); indexOffset = 2; workENodeCnt = tokens.Length - 2; } if (workENodeCnt <= 0) { MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } if (eNodeCnt == 0) { // 最初の要素の節点数を格納(チェックに利用) eNodeCnt = workENodeCnt; } else { // 要素の節点数が変わった? if (workENodeCnt != eNodeCnt) { MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } } //FemElement femElement = new FemElement(); FemElement femElement = FemMeshLogic.CreateFemElementByElementNodeCnt(eNodeCnt); femElement.No = elemNo; femElement.MediaIndex = mediaIndex; femElement.NodeNumbers = new int[eNodeCnt]; for (int n = 0; n < femElement.NodeNumbers.Length; n++) { femElement.NodeNumbers[n] = int.Parse(tokens[n + indexOffset]); } elements.Add(femElement); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Ports") { MessageBox.Show("入出力ポート情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int portCnt = int.Parse(tokens[1]); for (int i = 0; i < portCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2) { MessageBox.Show("入出力ポート情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int portNo = int.Parse(tokens[0]); int portNodeCnt = int.Parse(tokens[1]); if (portNo != i + 1) { MessageBox.Show("ポート番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } IList <int> portNodes = new List <int>(); for (int n = 0; n < portNodeCnt; n++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2) { MessageBox.Show("ポートの節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int portNodeNumber = int.Parse(tokens[0]); int nodeNumber = int.Parse(tokens[1]); if (portNodeNumber != n + 1) { MessageBox.Show("ポートの節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } portNodes.Add(nodeNumber); } ports.Add(portNodes); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Force") { MessageBox.Show("強制境界情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } int forceNodeCnt = int.Parse(tokens[1]); for (int i = 0; i < forceNodeCnt; i++) { line = sr.ReadLine(); int nodeNumber = int.Parse(line); forceBCNodes.Add(nodeNumber); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "IncidentPortNo") { MessageBox.Show("入射ポート番号がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } incidentPortNo = int.Parse(tokens[1]); ////////////////////////////////////////// //// Ver1.1.0.0からの追加情報 ////////////////////////////////////////// line = sr.ReadLine(); if (line == null || line.Length == 0) { // 媒質情報なし // ver1.0.0.0 } else { // 媒質情報? // ver1.1.0.0 tokens = line.Split(delimiter); if (tokens[0] != "Medias") { MessageBox.Show("媒質情報がありません"); return(false); } int cnt = int.Parse(tokens[1]); if (cnt > Constants.MaxMediaCount) { MessageBox.Show("媒質情報の個数が不正です"); return(false); } for (int i = 0; i < cnt; i++) { line = sr.ReadLine(); if (line.Length == 0) { MessageBox.Show("媒質情報が不正です"); return(false); } tokens = line.Split(delimiter); if (tokens.Length != 1 + 9 + 9) { MessageBox.Show("媒質情報が不正です"); return(false); } int mediaIndex = int.Parse(tokens[0]); System.Diagnostics.Debug.Assert(mediaIndex == i); double[,] p = new double[3, 3]; for (int m = 0; m < p.GetLength(0); m++) { for (int n = 0; n < p.GetLength(1); n++) { p[m, n] = double.Parse(tokens[1 + m * p.GetLength(1) + n]); } } medias[i].SetP(p); double[,] q = new double[3, 3]; for (int m = 0; m < q.GetLength(0); m++) { for (int n = 0; n < q.GetLength(1); n++) { q[m, n] = double.Parse(tokens[1 + 9 + m * q.GetLength(1) + n]); } } medias[i].SetQ(q); } } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 4 || tokens[0] != "WaveLengthRange") { MessageBox.Show("計算対象周波数情報がありません"); return(false); } firstWaveLength = double.Parse(tokens[1]); lastWaveLength = double.Parse(tokens[2]); calcCnt = int.Parse(tokens[3]); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "LsEqnSolverDv") { MessageBox.Show("線形方程式解法区分情報がありません"); return(false); } string value = tokens[1]; lsEqnSoverDv = FemSolver.StrToLinearSystemEqnSolverDV(value); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WaveModeDv") { MessageBox.Show("計算対象モード区分情報がありません"); return(false); } if (tokens[1] == "TE") { waveModeDv = FemSolver.WaveModeDV.TE; } else if (tokens[1] == "TM") { waveModeDv = FemSolver.WaveModeDV.TM; } else { MessageBox.Show("計算対象モード区分情報が不正です"); return(false); } } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WGStructureDv") { MessageBox.Show("計算対象導波路構造区分情報がありません"); return(false); } wgStructureDv = FemSolver.StrToWGStructureDV(tokens[1]); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WaveguideWidthForEPlane") { MessageBox.Show("E面解析用導波路幅がありません"); return(false); } waveguideWidthForEPlane = double.Parse(tokens[1]); } } } catch (Exception exception) { System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace); MessageBox.Show(exception.Message, "", MessageBoxButtons.OK, MessageBoxIcon.Error); return(false); } return(true); }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_FirstOrder; //3; // 1次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[0, ino, jno] = area * dldx[ino, 0] * dldx[jno, 0]; integralDNDX[1, ino, jno] = area * dldx[ino, 1] * dldx[jno, 1]; } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { area / 6.0 , area / 12.0, area / 12.0 }, { area / 12.0, area / 6.0, area / 12.0 }, { area / 12.0, area / 12.0, area / 6.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary<uint, int> inoGlobalDic = new Dictionary<uint,int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray<uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// コンストラクタ /// </summary> /// <param name="normalizedFreq1">計算開始規格化周波数</param> /// <param name="normalizedFreq2">計算終了規格化周波数</param> /// <param name="calcFreqCnt">計算点数</param> /// <param name="elemShapeDv">要素形状区分</param> /// <param name="elemOrder">要素次数</param> /// <param name="lsEqnSolverDv">線形方程式解法区分</param> public CalcSettingFrm(double normalizedFreq1, double normalizedFreq2, int calcFreqCnt, Constants.FemElementShapeDV elemShapeDv, int elemOrder, FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv) { InitializeComponent(); DialogResult = DialogResult.None; // フィールドに格納 NormalizedFreq1 = normalizedFreq1; NormalizedFreq2 = normalizedFreq2; CalcFreqCnt = calcFreqCnt; ElemShapeDv = elemShapeDv; ElemOrder = elemOrder; LsEqnSolverDv = lsEqnSolverDv; if (CalcFreqCnt == 0) { // 既定値を設定 NormalizedFreq1 = Constants.DefNormalizedFreqRange[0]; NormalizedFreq2 = Constants.DefNormalizedFreqRange[1]; CalcFreqCnt = Constants.DefCalcFreqencyPointCount; ElemShapeDv = Constants.DefElemShapeDv; ElemOrder = Constants.DefElementOrder; } // GUIにセット // 計算範囲 textBoxMinFreq.Text = string.Format("{0:F2}", NormalizedFreq1); textBoxMaxFreq.Text = string.Format("{0:F2}", NormalizedFreq2); double delta = (NormalizedFreq2 - NormalizedFreq1) / CalcFreqCnt; textBoxDeltaFreq.Text = string.Format("{0:F2}", delta); // 要素形状・次数 ElemShapeStruct[] esList = { new ElemShapeStruct(Constants.FemElementShapeDV.Triangle, Constants.SecondOrder, "2次三角形要素"), //new ElemShapeStruct(Constants.FemElementShapeDV.QuadType2, Constants.SecondOrder, "2次四角形要素"), //DelFEMでは四角形メッシュは非対応 new ElemShapeStruct(Constants.FemElementShapeDV.Triangle, Constants.FirstOrder, "1次三角形要素"), //new ElemShapeStruct(Constants.FemElementShapeDV.QuadType2, Constants.FirstOrder, "1次四角形要素"), //DelFEMでは四角形メッシュは非対応 }; foreach (ElemShapeStruct es in esList) { cboxElemShapeDv.Items.Add(es); if (es.ElemShapeDv == ElemShapeDv && es.Order == ElemOrder) { cboxElemShapeDv.SelectedItem = es; } } // 線形方程式解法 LinearSystemEqnSolverStruct[] lsList = { new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.PCOCG, "PCOCG"), new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.Zgbsv, "zgbsv(バンド行列)"), new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.Zgesv, "zgesv(一般行列)"), }; foreach (LinearSystemEqnSolverStruct ls in lsList) { cboxLsEqnSolverDv.Items.Add(ls); if (ls.LsEqnSolverDv == LsEqnSolverDv) { cboxLsEqnSolverDv.SelectedItem = ls; } } }
/* 数値積分版 /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WaveModeDv WaveModeDv, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; if (WaveModeDv == FemSolver.WaveModeDv.TE) { media_P = media.P; media_Q = media.Q; } else if (WaveModeDv == FemSolver.WaveModeDv.TM) { media_P = media.Q; media_Q = media.P; } else { System.Diagnostics.Debug.Assert(false); } // [p]は逆数をとる media_P = MyMatrixUtil.matrix_Inverse(media_P); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } //// 四角形の辺の長さを求める //double[] le = new double[4]; //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 new double[] { 0, -1.0}, //4 new double[] { 1.0, 0}, //5 new double[] { 0, 1.0}, //6 new double[] {-1.0, 0}, //7 }; // ガウスルジャンドルの積分公式 double[][] g_pts = new double[5][] { // ポイント(ξ: [-1 +1]区間)、重み new double[] { -0.90617985, 0.23692689}, new double[] { -0.53846931, 0.47862867}, new double[] {0.0, 0.56888889}, new double[] {0.53846931, 0.47862867}, new double[] {0.90617985, 0.23692689} }; // 要素剛性行列を作る double[,] emat = new Complex[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = 0.0; double detjsum = 0; //check foreach (double[] s_g_pt in g_pts) { foreach (double[] r_g_pt in g_pts) { // 積分点 double r = r_g_pt[0]; double s = s_g_pt[0]; // 重み(2次元) double weight = r_g_pt[1] * s_g_pt[1]; // 形状関数 double[] N = new double[nno]; // 形状関数のr, s方向微分 double[] dNdr = new double[nno]; double[] dNds = new double[nno]; // 節点0~3 : 四角形の頂点 for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0); // 形状関数のr方向微分 dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s); // 形状関数のs方向微分 dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s); } // 節点4,6 : r方向辺上中点 foreach (int i in new int[]{ 4, 6}) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s); // 形状関数のr方向微分 dNdr[i] = -1.0 * r * (1.0 + si * s); // 形状関数のs方向微分 dNds[i] = 0.5 * si * (1.0 - r * r); } // 節点5,7 : s方向辺上中点 foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; // 形状関数N N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s); // 形状関数のr方向微分 dNdr[i] = 0.5 * ri * (1.0 - s * s); // 形状関数のs方向微分 dNds[i] = -1.0 * s * (1.0 + ri * r); } // ヤコビアン行列 double j11; double j12; double j21; double j22; j11 = 0; j12 = 0; j21 = 0; j22 = 0; //for (int i = 0; i < vertexCnt; i++) //{ // // 頂点の座標の微分 // // 座標の形状関数は一次四角形のものを使用する // // 節点の局所座標 // double ri = n_pts[i][0]; // double si = n_pts[i][1]; // double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s); // double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si; // j11 += dNdr_1stOrder * pp[i][0]; // j12 += dNdr_1stOrder * pp[i][1]; // j21 += dNds_1stOrder * pp[i][0]; // j22 += dNds_1stOrder * pp[i][1]; //} for (int i = 0; i < nno; i++) { j11 += dNdr[i] * pp[i][0]; j12 += dNdr[i] * pp[i][1]; j21 += dNds[i] * pp[i][0]; j22 += dNds[i] * pp[i][1]; } // ヤコビアン double detj = j11 * j22 - j12 * j21; detjsum += detj * weight; //System.Diagnostics.Debug.WriteLine("det:{0}", detj); // gradr[0] : gradrのx成分 grad[1] : gradrのy成分 // grads[0] : gradsのx成分 grads[1] : gradsのy成分 double[] gradr = new double[2]; double[] grads = new double[2]; gradr[0] = j22 / detj; gradr[1] = - j21 / detj; grads[0] = - j12 / detj; grads[1] = j11 / detj; // 形状関数のx, y方向微分 double[,] dNdX = new double[ndim, nno]; for (int i = 0; i < nno; i++) { for (int direction = 0; direction < ndim; direction++) { dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction]; } } // 汎関数 double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno] - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno]; emat[ino, jno] += detj * weight * functional; } } //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum); } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; mat[inoGlobal, jnoGlobal] += emat[ino, jno]; } } } */ /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 new double[] { 0, -1.0}, //4 new double[] { 1.0, 0}, //5 new double[] { 0, 1.0}, //6 new double[] {-1.0, 0}, //7 }; // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] Ni_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.25 * ri * ri * si; Ni_a[i, 1] = 0.25 * ri * ri; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.25 * ri * si; Ni_a[i, 4] = 0.25 * ri * si * si; Ni_a[i, 5] = 0.25 * si * si; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = -0.25; } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = -0.5 * si; Ni_a[i, 1] = -0.5; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = 0.0; Ni_a[i, 5] = 0.0; Ni_a[i, 6] = 0.5 * si; Ni_a[i, 7] = 0.5; } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.0; Ni_a[i, 1] = 0.0; Ni_a[i, 2] = 0.5 * ri; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = -0.5 * ri; Ni_a[i, 5] = -0.5; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = 0.5; } // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNidr_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri; // r dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.25 * ri * si * si; // s^2 dNidr_a[i, 6] = 0.25 * ri * si; // s dNidr_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = -1.0; // r dNidr_a[i, 3] = -si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.0; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.0; // 1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.0; // r dNidr_a[i, 3] = 0.0; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = -0.5 * ri; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.5 * ri; // 1 } // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNids_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.25 * ri * ri * si; // r^2 dNids_a[i, 2] = 0.25 * ri * si; // r dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.25 * 2.0 * si * si; // s dNids_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = -0.5 * si; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = 0.0; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.0; // s dNids_a[i, 7] = 0.5 * si; //1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.0; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = -ri; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = -1.0; // s dNids_a[i, 7] = 0.0; //1 } // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; // ∫N N dxdy double[,] integralN = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralN[ino, jno] = lx * ly / 4.0 * ( // r^4s^2 4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3] + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6]) // r^4 + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1] // r^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4] // s^4 + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5] // s^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7]) // 1 + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7] ); integralDNDX[0, ino, jno] = ly / lx * ( // r^4s^2 4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2] + dNidr_a[ino, 3] * dNidr_a[jno, 3] + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4] // s^4 + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7]) // 1 + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7] ); integralDNDX[1, ino, jno] = lx / ly * ( // r^4s^2 4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2] + dNids_a[ino, 3] * dNids_a[jno, 3] + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4] // s^4 + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7]) // 1 + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7] ); } } // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary<uint, int> inoGlobalDic = new Dictionary<uint,int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray<uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// Fem入力データをファイルから読み込み /// </summary> /// <param name="filename">ファイル名(*.fem)</param> /// <param name="nodes">節点リスト</param> /// <param name="elements">要素リスト</param> /// <param name="ports">ポートの節点番号リストのリスト</param> /// <param name="forceBCNodes">強制境界節点番号リスト</param> /// <param name="incidentPortNo">入射ポート番号</param> /// <param name="medias">媒質情報リスト</param> /// <param name="firstWaveLength">計算開始波長</param> /// <param name="lastWaveLength">計算終了波長</param> /// <param name="calcCnt">計算件数</param> /// <param name="wgStructureDv">導波路構造区分</param> /// <param name="waveModeDv">波のモード区分</param> /// <param name="lsEqnSoverDv">線形方程式解法区分</param> /// <param name="waveguideWidthForEPlane">導波管幅(E面解析用)</param> /// <returns></returns> public static bool LoadFromFile( string filename, out IList<FemNode> nodes, out IList<FemElement> elements, out IList<IList<int>> ports, out IList<int> forceBCNodes, out int incidentPortNo, out MediaInfo[] medias, out double firstWaveLength, out double lastWaveLength, out int calcCnt, out FemSolver.WGStructureDV wgStructureDv, out FemSolver.WaveModeDV waveModeDv, out FemSolver.LinearSystemEqnSoverDV lsEqnSoverDv, out double waveguideWidthForEPlane ) { int eNodeCnt = 0; nodes = new List<FemNode>(); elements = new List<FemElement>(); ports = new List<IList<int>>(); forceBCNodes = new List<int>(); incidentPortNo = 1; medias = new MediaInfo[Constants.MaxMediaCount]; for (int i = 0; i < medias.Length; i++) { MediaInfo media = new MediaInfo(); media.BackColor = CadLogic.MediaBackColors[i]; medias[i] = media; } firstWaveLength = 0.0; lastWaveLength = 0.0; calcCnt = 0; wgStructureDv = Constants.DefWGStructureDv; waveModeDv = Constants.DefWaveModeDv; lsEqnSoverDv = Constants.DefLsEqnSolverDv; waveguideWidthForEPlane = 0; if (!File.Exists(filename)) { return false; } // 入力データ読み込み try { using (StreamReader sr = new StreamReader(filename)) { const char delimiter = ','; string line; string[] tokens; line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Nodes") { MessageBox.Show("節点情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int nodeCnt = int.Parse(tokens[1]); for (int i = 0; i < nodeCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 3) { MessageBox.Show("節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int no = int.Parse(tokens[0]); if (no != i + 1) { MessageBox.Show("節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } FemNode femNode = new FemNode(); femNode.No = no; femNode.Coord = new double[2]; femNode.Coord[0] = double.Parse(tokens[1]); femNode.Coord[1] = double.Parse(tokens[2]); nodes.Add(femNode); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Elements") { MessageBox.Show("要素情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int elementCnt = int.Parse(tokens[1]); for (int i = 0; i < elementCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if ((tokens.Length != 1 + Constants.TriNodeCnt_SecondOrder) && (tokens.Length != 2 + Constants.TriNodeCnt_SecondOrder) // ver1.1.0.0で媒質インデックスを番号の後に挿入 && (tokens.Length != 2 + Constants.QuadNodeCnt_SecondOrder_Type2) && (tokens.Length != 2 + Constants.TriNodeCnt_FirstOrder) && (tokens.Length != 2 + Constants.QuadNodeCnt_FirstOrder) ) { MessageBox.Show("要素情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int elemNo = int.Parse(tokens[0]); int mediaIndex = 0; int indexOffset = 1; // ver1.0.0.0 int workENodeCnt = Constants.TriNodeCnt_SecondOrder; if (tokens.Length == 1 + Constants.TriNodeCnt_SecondOrder) { // 媒質インデックスのない古い形式(ver1.0.0.0) } else { // ver1.1.0.0で媒質インデックスを追加 mediaIndex = int.Parse(tokens[1]); indexOffset = 2; workENodeCnt = tokens.Length - 2; } if (workENodeCnt <= 0) { MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } if (eNodeCnt == 0) { // 最初の要素の節点数を格納(チェックに利用) eNodeCnt = workENodeCnt; } else { // 要素の節点数が変わった? if (workENodeCnt != eNodeCnt) { MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } } //FemElement femElement = new FemElement(); FemElement femElement = FemMeshLogic.CreateFemElementByElementNodeCnt(eNodeCnt); femElement.No = elemNo; femElement.MediaIndex = mediaIndex; femElement.NodeNumbers = new int[eNodeCnt]; for (int n = 0; n < femElement.NodeNumbers.Length; n++) { femElement.NodeNumbers[n] = int.Parse(tokens[n + indexOffset]); } elements.Add(femElement); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Ports") { MessageBox.Show("入出力ポート情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int portCnt = int.Parse(tokens[1]); for (int i = 0; i < portCnt; i++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2) { MessageBox.Show("入出力ポート情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int portNo = int.Parse(tokens[0]); int portNodeCnt = int.Parse(tokens[1]); if (portNo != i + 1) { MessageBox.Show("ポート番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } IList<int> portNodes = new List<int>(); for (int n = 0; n < portNodeCnt; n++) { line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2) { MessageBox.Show("ポートの節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int portNodeNumber = int.Parse(tokens[0]); int nodeNumber = int.Parse(tokens[1]); if (portNodeNumber != n + 1) { MessageBox.Show("ポートの節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } portNodes.Add(nodeNumber); } ports.Add(portNodes); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "Force") { MessageBox.Show("強制境界情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } int forceNodeCnt = int.Parse(tokens[1]); for (int i = 0; i < forceNodeCnt; i++) { line = sr.ReadLine(); int nodeNumber = int.Parse(line); forceBCNodes.Add(nodeNumber); } line = sr.ReadLine(); tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "IncidentPortNo") { MessageBox.Show("入射ポート番号がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } incidentPortNo = int.Parse(tokens[1]); ////////////////////////////////////////// //// Ver1.1.0.0からの追加情報 ////////////////////////////////////////// line = sr.ReadLine(); if (line == null || line.Length == 0) { // 媒質情報なし // ver1.0.0.0 } else { // 媒質情報? // ver1.1.0.0 tokens = line.Split(delimiter); if (tokens[0] != "Medias") { MessageBox.Show("媒質情報がありません"); return false; } int cnt = int.Parse(tokens[1]); if (cnt > Constants.MaxMediaCount) { MessageBox.Show("媒質情報の個数が不正です"); return false; } for (int i = 0; i < cnt; i++) { line = sr.ReadLine(); if (line.Length == 0) { MessageBox.Show("媒質情報が不正です"); return false; } tokens = line.Split(delimiter); if (tokens.Length != 1 + 9 + 9) { MessageBox.Show("媒質情報が不正です"); return false; } int mediaIndex = int.Parse(tokens[0]); System.Diagnostics.Debug.Assert(mediaIndex == i); double[,] p = new double[3, 3]; for (int m = 0; m < p.GetLength(0); m++) { for (int n = 0; n < p.GetLength(1); n++) { p[m, n] = double.Parse(tokens[1 + m * p.GetLength(1) + n]); } } medias[i].SetP(p); double[,] q = new double[3, 3]; for (int m = 0; m < q.GetLength(0); m++) { for (int n = 0; n < q.GetLength(1); n++) { q[m, n] = double.Parse(tokens[1 + 9 + m * q.GetLength(1) + n]); } } medias[i].SetQ(q); } } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 4 || tokens[0] != "WaveLengthRange") { MessageBox.Show("計算対象周波数情報がありません"); return false; } firstWaveLength = double.Parse(tokens[1]); lastWaveLength = double.Parse(tokens[2]); calcCnt = int.Parse(tokens[3]); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "LsEqnSolverDv") { MessageBox.Show("線形方程式解法区分情報がありません"); return false; } string value = tokens[1]; lsEqnSoverDv = FemSolver.StrToLinearSystemEqnSolverDV(value); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WaveModeDv") { MessageBox.Show("計算対象モード区分情報がありません"); return false; } if (tokens[1] == "TE") { waveModeDv = FemSolver.WaveModeDV.TE; } else if (tokens[1] == "TM") { waveModeDv = FemSolver.WaveModeDV.TM; } else { MessageBox.Show("計算対象モード区分情報が不正です"); return false; } } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WGStructureDv") { MessageBox.Show("計算対象導波路構造区分情報がありません"); return false; } wgStructureDv = FemSolver.StrToWGStructureDV(tokens[1]); } line = sr.ReadLine(); if (line == null || line.Length == 0) { } else { tokens = line.Split(delimiter); if (tokens.Length != 2 || tokens[0] != "WaveguideWidthForEPlane") { MessageBox.Show("E面解析用導波路幅がありません"); return false; } waveguideWidthForEPlane = double.Parse(tokens[1]); } } } catch (Exception exception) { System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace); MessageBox.Show(exception.Message, "", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; } return true; }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary<int, int> toSorted, FemElement element, IList<FemNode> Nodes, MediaInfo[] Medias, Dictionary<int, bool> ForceNodeNumberH, FemSolver.WaveModeDV WaveModeDv, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_FirstOrder; //4; // 1次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; if (WaveModeDv == FemSolver.WaveModeDV.TE) { media_P = media.P; media_Q = media.Q; } else if (WaveModeDv == FemSolver.WaveModeDV.TM) { media_P = media.Q; media_Q = media.P; } else { System.Diagnostics.Debug.Assert(false); } // [p]は逆数をとる media_P = MyMatrixUtil.matrix_Inverse(media_P); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ + +2 // | | | // ---+---+---+-->r // | | | // 0+ + +1 // | // double[][] n_pts = { // r, s new double[] {-1.0, -1.0}, //0 new double[] { 1.0, -1.0}, //1 new double[] { 1.0, 1.0}, //2 new double[] {-1.0, 1.0}, //3 }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno] { { { 2.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx) }, { -2.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx) }, { -1.0 * ly /(6.0 * lx), 1.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx) }, { 1.0 * ly /(6.0 * lx), -1.0 * ly /(6.0 * lx), -2.0 * ly /(6.0 * lx), 2.0 * ly /(6.0 * lx) }, }, { { 2.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly) }, { 1.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly) }, { -1.0 * lx /(6.0 * ly), -2.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly) }, { -2.0 * lx /(6.0 * ly), -1.0 * lx /(6.0 * ly), 1.0 * lx /(6.0 * ly), 2.0 * lx /(6.0 * ly) }, } }; // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 }, { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary<uint, int> inoGlobalDic = new Dictionary<uint,int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray<uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// Fem入力データをファイルへ書き込み /// </summary> /// <param name="filename">ファイル名(*.fem)</param> /// <param name="nodes">節点リスト</param> /// <param name="elements">要素リスト</param> /// <param name="ports">ポートの節点番号リストのリスト</param> /// <param name="forceBCNodes">強制境界節点番号リスト</param> /// <param name="incidentPortNo">入射ポート番号</param> /// <param name="medias">媒質情報リスト</param> /// <param name="firstWaveLength">計算開始波長</param> /// <param name="lastWaveLength">計算終了波長</param> /// <param name="calcCnt">計算件数</param> /// <param name="wgStructureDv">導波路構造区分</param> /// <param name="waveModeDv">波のモード区分</param> /// <param name="lsEqnSolverDv">線形方程式解法区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <returns></returns> public static void SaveToFile(string filename, IList<FemNode> nodes, IList<FemElement> elements, IList<IList<int>> ports, IList<int> forceBCNodes, int incidentPortNo, MediaInfo[] medias, double firstWaveLength, double lastWaveLength, int calcCnt, FemSolver.WGStructureDV wgStructureDv, FemSolver.WaveModeDV waveModeDv, FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv, double waveguideWidthForEPlane ) { int nodeCnt = nodes.Count; IList<double[]> doubleCoords = new List<double[]>(); foreach (FemNode femNode in nodes) { doubleCoords.Add(femNode.Coord); } int elementCnt = elements.Count; IList<int[]> in_elements = new List<int[]>(); foreach (FemElement femElement in elements) { int cnt = 2 + femElement.NodeNumbers.Length; int[] in_element = new int[cnt]; in_element[0] = femElement.No; in_element[1] = femElement.MediaIndex; for (int ino = 0; ino < femElement.NodeNumbers.Length; ino++) { in_element[2 + ino] = femElement.NodeNumbers[ino]; } in_elements.Add(in_element); } int portCnt = ports.Count; int[] forceBCNodeNumbers = forceBCNodes.ToArray(); SaveToFileFromCad( filename, nodeCnt, doubleCoords, elementCnt, in_elements, portCnt, ports, forceBCNodeNumbers, incidentPortNo, medias, firstWaveLength, lastWaveLength, calcCnt, wgStructureDv, waveModeDv, lsEqnSolverDv, waveguideWidthForEPlane); }
/// <summary> /// コンストラクタ /// </summary> /// <param name="normalizedFreq1">計算開始規格化周波数</param> /// <param name="normalizedFreq2">計算終了規格化周波数</param> /// <param name="calcFreqCnt">計算点数</param> /// <param name="wgStructureDv">導波路構造区分</param> /// <param name="waveModeDv">モード区分</param> /// <param name="elemShapeDv">要素形状区分</param> /// <param name="elemOrder">要素次数</param> /// <param name="lsEqnSolverDv">線形方程式解法区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> public CalcSettingFrm(double normalizedFreq1, double normalizedFreq2, int calcFreqCnt, FemSolver.WGStructureDV wgStructureDv, FemSolver.WaveModeDV waveModeDv, Constants.FemElementShapeDV elemShapeDv, int elemOrder, FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv, double waveguideWidthForEPlane) { InitializeComponent(); DialogResult = DialogResult.None; // フィールドに格納 NormalizedFreq1 = normalizedFreq1; NormalizedFreq2 = normalizedFreq2; CalcFreqCnt = calcFreqCnt; WGStructureDv = wgStructureDv; WaveModeDv = waveModeDv; ElemShapeDv = elemShapeDv; ElemOrder = elemOrder; LsEqnSolverDv = lsEqnSolverDv; if (CalcFreqCnt == 0) { // 既定値を設定 NormalizedFreq1 = Constants.DefNormalizedFreqRange[0]; NormalizedFreq2 = Constants.DefNormalizedFreqRange[1]; CalcFreqCnt = Constants.DefCalcFreqencyPointCount; } // GUIにセット // 計算範囲 textBoxMinFreq.Text = string.Format("{0:F3}", NormalizedFreq1); textBoxMaxFreq.Text = string.Format("{0:F3}", NormalizedFreq2); double delta = (NormalizedFreq2 - NormalizedFreq1) / CalcFreqCnt; textBoxDeltaFreq.Text = string.Format("{0:F3}", delta); // 計算モード RadioBtnModeDvs = new RadioButton[]{ radioBtnWaveModeDvTE, radioBtnWaveModeDvTM }; FemSolver.WaveModeDV[] waveModeDvOf_radioBtnModeDvs = { FemSolver.WaveModeDV.TE, FemSolver.WaveModeDV.TM }; for (int i = 0; i < RadioBtnModeDvs.Length; i++) { RadioBtnModeDvs[i].Tag = waveModeDvOf_radioBtnModeDvs[i]; if ((FemSolver.WaveModeDV)RadioBtnModeDvs[i].Tag == WaveModeDv) { RadioBtnModeDvs[i].Checked = true; } } // 導波路構造区分 WGStructureDVStruct[] wgStructureDvStructList = { new WGStructureDVStruct(FemSolver.WGStructureDV.HPlane2D, "H面導波管"), new WGStructureDVStruct(FemSolver.WGStructureDV.EPlane2D, "E面導波管"), new WGStructureDVStruct(FemSolver.WGStructureDV.ParaPlate2D, "平行平板導波路"), }; foreach (WGStructureDVStruct wgStructureDvStruct in wgStructureDvStructList) { cboxWGStructureDv.Items.Add(wgStructureDvStruct); if (wgStructureDvStruct.WGStructureDv == WGStructureDv) { cboxWGStructureDv.SelectedItem = wgStructureDvStruct; } } // 導波路幅(E面解析用) this.textBoxWaveguideWidthForEPlane.Text = string.Format("{0:F4}", waveguideWidthForEPlane); // 要素形状・次数 ElemShapeStruct[] esList = { new ElemShapeStruct(Constants.FemElementShapeDV.Triangle, Constants.SecondOrder, "2次三角形要素"), //new ElemShapeStruct(Constants.FemElementShapeDV.QuadType2, Constants.SecondOrder, "2次四角形要素"), //DelFEMでは四角形メッシュは非対応 new ElemShapeStruct(Constants.FemElementShapeDV.Triangle, Constants.FirstOrder, "1次三角形要素"), //new ElemShapeStruct(Constants.FemElementShapeDV.QuadType2, Constants.FirstOrder, "1次四角形要素"), //DelFEMでは四角形メッシュは非対応 }; foreach (ElemShapeStruct es in esList) { cboxElemShapeDv.Items.Add(es); if (es.ElemShapeDv == ElemShapeDv && es.Order == ElemOrder) { cboxElemShapeDv.SelectedItem = es; } } // 線形方程式解法 LinearSystemEqnSolverStruct[] lsList = { new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.PCOCG, "PCOCG"), new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.Zgbsv, "zgbsv(バンド行列)"), new LinearSystemEqnSolverStruct(FemSolver.LinearSystemEqnSoverDV.Zgesv, "zgesv(一般行列)"), }; foreach (LinearSystemEqnSolverStruct ls in lsList) { cboxLsEqnSolverDv.Items.Add(ls); if (ls.LsEqnSolverDv == LsEqnSolverDv) { cboxLsEqnSolverDv.SelectedItem = ls; } } }
/// <summary> /// Fem入力データファイルへ保存 /// I/FがCadの内部データ寄りになっているので、変更したいが後回し /// </summary> /// <param name="filename">ファイル名(*.fem)</param> /// <param name="nodeCnt">節点数</param> /// <param name="doubleCoords">節点座標リスト</param> /// <param name="elementCnt">要素数</param> /// <param name="elements">要素リスト</param> /// <param name="portCnt">ポート数</param> /// <param name="portList">ポートの節点番号リストのリスト</param> /// <param name="forceBCNodeNumbers">強制境界節点番号のリスト</param> /// <param name="incidentPortNo">入射ポート番号</param> /// <param name="medias">媒質情報リスト</param> /// <param name="firstWaveLength">計算開始波長</param> /// <param name="lastWaveLength">計算終了波長</param> /// <param name="calcCnt">計算周波数件数</param> /// <param name="wgStructureDv">導波路構造区分</param> /// <param name="waveModeDv">波のモード区分</param> /// <param name="lsEqnSolverDv">線形方程式解法区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> public static void SaveToFileFromCad(string filename, int nodeCnt, IList<double[]> doubleCoords, int elementCnt, IList<int[]> elements, int portCnt, IList<IList<int>> portList, int[] forceBCNodeNumbers, int incidentPortNo, MediaInfo[] medias, double firstWaveLength, double lastWaveLength, int calcCnt, FemSolver.WGStructureDV wgStructureDv, FemSolver.WaveModeDV waveModeDv, FemSolver.LinearSystemEqnSoverDV lsEqnSolverDv, double waveguideWidthForEPlane) { ////////////////////////////////////////// // ファイル出力 ////////////////////////////////////////// try { using (StreamWriter sw = new StreamWriter(filename)) { string line; // 節点番号と座標の出力 line = string.Format("Nodes,{0}", nodeCnt); sw.WriteLine(line); for (int i = 0; i < doubleCoords.Count; i++) { double[] doubleCoord = doubleCoords[i]; int nodeNumber = i + 1; line = string.Format("{0},{1},{2}", nodeNumber, doubleCoord[0], doubleCoord[1]); sw.WriteLine(line); } // 要素番号と要素を構成する節点の全体節点番号の出力 line = string.Format("Elements,{0}", elementCnt); sw.WriteLine(line); foreach (int[] element in elements) { line = ""; foreach (int k in element) { line += string.Format("{0},", k); } line = line.Substring(0, line.Length - 1); // 最後の,を削除 sw.WriteLine(line); } // ポート境界条件節点 int portCounter = 0; line = string.Format("Ports,{0}", portList.Count); sw.WriteLine(line); foreach (IList<int> nodes in portList) { line = string.Format("{0},{1}", ++portCounter, nodes.Count); sw.WriteLine(line); int portNodeNumber = 0; foreach (int nodeNumber in nodes) { line = string.Format("{0},{1}", ++portNodeNumber, nodeNumber); sw.WriteLine(line); } } // 強制境界節点 line = string.Format("Force,{0}", forceBCNodeNumbers.Length); sw.WriteLine(line); foreach (int nodeNumber in forceBCNodeNumbers) { line = string.Format("{0}", nodeNumber); sw.WriteLine(line); } // 入射ポート番号 line = string.Format("IncidentPortNo,{0}", incidentPortNo); sw.WriteLine(line); ////////////////////////////////////////// //// Ver1.1.0.0からの追加情報 ////////////////////////////////////////// // 媒質情報の個数 sw.WriteLine("Medias,{0}", medias.Length); // 媒質情報の書き込み for (int i = 0; i < medias.Length; i++) { MediaInfo media = medias[i]; line = string.Format("{0},", i); double[,] p = media.P; for (int m = 0; m < p.GetLength(0); m++) { for (int n = 0; n < p.GetLength(1); n++) { line += string.Format("{0},", p[m, n]); } } double[,] q = media.Q; for (int m = 0; m < q.GetLength(0); m++) { for (int n = 0; n < q.GetLength(1); n++) { line += string.Format("{0},", q[m, n]); } } line = line.Remove(line.Length - 1); // 最後の,を削除 sw.WriteLine(line); } // 計算対象周波数 sw.WriteLine("WaveLengthRange,{0},{1},{2}", firstWaveLength, lastWaveLength, calcCnt); // 線形方程式解法区分 sw.WriteLine("LsEqnSolverDv,{0}", FemSolver.LinearSystemEqnSolverDVToStr(lsEqnSolverDv)); // 計算対象モード区分 sw.WriteLine("WaveModeDv,{0}", ((waveModeDv == FemSolver.WaveModeDV.TM) ? "TM" : "TE")); // 導波路構造区分 sw.WriteLine("WGStructureDv,{0}", FemSolver.WGStructureDVToStr(wgStructureDv)); // 導波路幅(E面解析用) sw.WriteLine("WaveguideWidthForEPlane,{0}", waveguideWidthForEPlane); } } catch (Exception exception) { System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace); MessageBox.Show(exception.Message); } }
/// <summary> /// コンストラクタ /// </summary> /// <param name="elemShapeDv">導波路構造区分</param> /// <param name="text">表示テキスト</param> public WGStructureDVStruct(FemSolver.WGStructureDV wgStructureDv, string text) { WGStructureDv = wgStructureDv; Text = text; }
/// <summary> /// 計算モードのラベル表示 /// </summary> /// <param name="waveModeDv"></param> private void setLabelCalcModeText(FemSolver.WGStructureDV wgStructureDv, FemSolver.WaveModeDV waveModeDv) { string text; if (wgStructureDv == FemSolver.WGStructureDV.HPlane2D) { text = "H面"; } else if (wgStructureDv == FemSolver.WGStructureDV.EPlane2D) { text = "E面"; } else if (wgStructureDv == FemSolver.WGStructureDV.ParaPlate2D) { text = "平行板"; } else { text = "(unknown)"; } text += " " + ((waveModeDv == FemSolver.WaveModeDV.TM) ? "TM" : "TE"); labelCalcMode.Text = text; }
/// <summary> /// 入出力データの初期化 /// </summary> public void InitData( FemSolver solver, Panel CadPanel, Panel FValuePanel, Panel FValueLegendPanel, Label labelFreqValue, Chart SMatChart, Chart BetaChart, Chart EigenVecChart ) { initInput(); initOutput(); // 一度だけの初期化処理 initDataOnce(FValueLegendPanel, labelFreqValue); // ポストプロセッサに入力データをコピー // 入力データの取得 solver.GetFemInputInfo(out Nodes, out Elements, out Medias, out Ports, out ForceNodes, out IncidentPortNo, out WaveguideWidth); // チャートの設定用に開始終了波長を取得 FirstWaveLength = solver.FirstWaveLength; LastWaveLength = solver.LastWaveLength; CalcFreqCnt = solver.CalcFreqCnt; // 波のモード区分を取得 WaveModeDv = solver.WaveModeDv; // 導波路構造区分を取得 WGStructureDv = solver.WGStructureDv; // 導波路幅(E面解析用) WaveguideWidthForEPlane = solver.WaveguideWidthForEPlane; // 光導波路の最小、最大比誘電率を取得する setupOpticalWgEps(); //if (isInputDataReady()) // ポートが指定されていなくてもメッシュを表示できるように条件を変更 if (Elements != null && Elements.Length > 0 && Nodes != null && Nodes.Length > 0 && Medias != null && Medias.Length > 0) { // 各要素に節点情報を補完する foreach (FemElement element in Elements) { element.SetNodesFromAllNodes(Nodes); element.LineColor = Color.Black; element.BackColor = Medias[element.MediaIndex].BackColor; } } // メッシュ描画 //using (Graphics g = CadPanel.CreateGraphics()) //{ // DrawMesh(g, CadPanel); //} //CadPanel.Invalidate(); if (!IsAutoCalc) { // チャート初期化 ResetSMatChart(SMatChart); // 等高線図の凡例 UpdateFValueLegend(FValueLegendPanel, labelFreqValue); // 等高線図 //FValuePanel.Invalidate(); FValuePanel.Refresh(); // 固有値チャート初期化 // この段階ではMaxModeの値が0なので、後に計算値ロード後一回だけ初期化する ResetEigenValueChart(BetaChart); // 固有ベクトル表示(空のデータで初期化) SetEigenVecToChart(EigenVecChart); } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_FirstOrder; //4; // 1次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ + +2 // | | | // ---+---+---+-->r // | | | // 0+ + +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno] { { { 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx) }, { -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx) }, { -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx) }, { 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx) }, }, { { 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly) }, { 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly) }, { -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly) }, { -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly) }, } }; // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 }, { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }