Ejemplo n.º 1
0
        private void Button_Click_1(object sender, RoutedEventArgs e)
        {
            string collectionName = CollectionName.Text;
            int    featureCount   = int.Parse(FeatureCount.Text);
            //int featureToSelectCount = int.Parse(FeatureToSelectCount.Text);

            DatabaseService     databaseService     = new DatabaseService();
            var                 dataSet             = databaseService.ConvertMongoColectionToListOfLists(featureCount, collectionName);
            SpearmanCorrelation spearmanCorrelation = new SpearmanCorrelation();

            var wynik = spearmanCorrelation.MakeCorelationTable(featureCount, collectionName, dataSet);

            ////before your loop
            var csv = new StringBuilder();

            for (int i = 0; i < featureCount + 1; i++)
            {
                var newLine = string.Empty;
                for (int j = 0; j < featureCount + 1; j++)
                {
                    newLine += wynik[i, j].ToString() + ";";
                }
                csv.AppendLine(newLine);
            }

            File.WriteAllText($"E://cos//wynikiDobreDoMGR//Spearman_{collectionName}_corelationTable_{DateTime.Now.ToString("yyyy-dd-M--HH-mm-ss")}.txt", csv.ToString());

            //FiltersHelper filtersHelper = new FiltersHelper();
            //filtersHelper.SelectFeaturesAndWriteToFile(wynik, featureToSelectCount, "Spearman_" + collectionName, featureCount);

            FeatureSelection featureSelection = new FeatureSelection();

            featureSelection.SelectFeaturesAndCheckClasification(wynik, featureCount + 1, dataSet, collectionName, "Spearman");
            MessageBox.Show("Wykonano obliczenia.");
        }
Ejemplo n.º 2
0
        public void RandomForestsCrossValidationTest_2()
        {
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_dnsHttpTls_cap);

            var applicationProtocolModelEvaluator = this.AppIdentService.CreateApplicationProtocolModels(this.L7Conversations, 10);
            var featureVectors      = applicationProtocolModelEvaluator.TrainingFeatureVectors.ToList();
            var appIdentAcordSource = new AppIdentAcordSource();

            appIdentAcordSource.Init(featureVectors);

            Console.WriteLine($"Feature vectors: {featureVectors.Count}");
            var featureSelection = new FeatureSelection(appIdentAcordSource.FeatureSelector);

            featureSelection.ProcessFeatureSelection(appIdentAcordSource, 0.5);

            foreach (var feature in featureSelection.FeatureSelector.SelectedFeatures)
            {
                Console.WriteLine($"{feature.Name}");
            }

            var rfcModel = this.AccordAppIdent.GetBestRandomForestsWithGridSearch(appIdentAcordSource, out var bestParameters, out var minError);
            // get the cross validation results
            var cvResults = this.AccordAppIdent.GetCrossValidationResultsOfRandomForestModel(appIdentAcordSource, bestParameters);

            Console.WriteLine("### CV Results ###");
            Console.WriteLine("\n### Training stats ###");
            Console.WriteLine(">> model error mean: {0}\n>> model std:  {1}", Math.Round(cvResults.Training.Mean, 6), Math.Round(cvResults.Training.StandardDeviation, 6));
            Console.WriteLine("\n### Validation stats ###");
            Console.WriteLine(">> model error mean: {0}\n>> model std:  {1}", Math.Round(cvResults.Validation.Mean, 6), Math.Round(cvResults.Validation.StandardDeviation, 6));

            var minErorr   = cvResults.Validation.Values.Min();
            var bestIndex  = cvResults.Validation.Values.IndexOf(minErorr);
            var classifier = cvResults.Models[bestIndex];

            var validationDataSource = classifier.Tag as AccordAppIdent.ValidationDataSource;
            var predictedValues      = classifier.Model.Decide(validationDataSource.ValidationInputs);

            var i = 0;

            foreach (var label in appIdentAcordSource.Labels.Distinct())
            {
                var conf = new ConfusionMatrix(validationDataSource.ValidationOutputs, predictedValues, i++);
                Console.WriteLine($"##########################");
                Console.WriteLine($"Protocol: {label}");
                Console.WriteLine($"TP: {conf.TruePositives}");
                Console.WriteLine($"TN: {conf.TrueNegatives}");
                Console.WriteLine($"FN: {conf.FalseNegatives}");
                Console.WriteLine($"FP: {conf.FalsePositives}");
                Console.WriteLine($"Accuracy: {conf.Accuracy}");
                Console.WriteLine($"Precision: {conf.Precision}");
                Console.WriteLine($"Specificity: {conf.Specificity}");
                Console.WriteLine($"Sensitivity: {conf.Sensitivity}");
                Console.WriteLine($"FScore: {conf.FScore}");
            }
        }
Ejemplo n.º 3
0
        public FeatureSelector EliminateCorelatedFeatures(AppIdentAcordSource appIdentAcordSource, double trashold, AppIdentTestContext appIdentTestContext)
        {
            var featureSelection = new FeatureSelection();

            featureSelection.ProcessFeatureSelection(appIdentAcordSource, trashold);

            var featureSelector = appIdentAcordSource.FeatureSelector;

            appIdentTestContext.Save(featureSelector);
            return(featureSelector);
        }
Ejemplo n.º 4
0
        // Left hand
        public override object VisitComposite_selector_simple([NotNull] GrammarParser.Composite_selector_simpleContext context)
        {
            // 1. Visit the children (Feature_selector_abs and Attribute_selector)
            FeatureSelection matchingFeatureSelection = (FeatureSelection)Visit(context.feature_selector_abs());
            string           attributeIdentifier      = (string)Visit(context.attribute_selector());


            // 2. Get the matching AttributeValue
            AttributeValue matchingAttributeValue = matchingFeatureSelection.AttributeValues.Find(attrval => attrval.AttributeIdentifier == attributeIdentifier);


            // 3. Return the AttributeValue together with its parent FeatureSelection
            return(new AttrValAndFeatureSelPair()
            {
                ParentFeatureSelection = matchingFeatureSelection,
                AttributeValue = matchingAttributeValue
            });
        }
Ejemplo n.º 5
0
        //[DotMemoryUnit(CollectAllocations = true)]
        //[AssertTraffic(AllocatedSizeInBytes = 1024*1024)]
        public void CorrelationMatrixTest_M2()
        {
            MainWindow window = null;

            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_dnsHttpTls_cap);
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_learn1_cap);
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_refSkype_cap);
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_streamSkypeHttpTls_cap);
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_testM1_cap);
            this.ProcessPcapFile(SnoopersPcaps.Default.app_identification_testM2_cap);
            List <L7Conversation> testSet;
            var applicationProtocolModelEvaluator = this.AppIdentService.CreateApplicationProtocolModels(this.L7Conversations, 0.9, out testSet);
            var featureVectors      = applicationProtocolModelEvaluator.TrainingFeatureVectors.ToList();
            var appIdentAcordSource = new AppIdentAcordSource();

            appIdentAcordSource.Init(featureVectors);

            var featureSelection = new FeatureSelection(appIdentAcordSource.FeatureSelector);

            var selection         = featureSelection.ProcessFeatureSelection(appIdentAcordSource, 0.3);
            var correlationMatrix = selection.Last();


            // The dispatcher thread
            var t = new Thread(() =>
            {
                window = new MainWindow
                {
                    DataContext = new MainViewModel(appIdentAcordSource.FeatureNames, correlationMatrix)
                };
                //window.DataContext = new MainViewModel();
                // Initiates the dispatcher thread shutdown when the window closes
                window.Closed += (s, e) => window.Dispatcher.InvokeShutdown();
                window.Show();
                // Makes the thread support message pumping
                Dispatcher.Run();
            });

            // Configure the thread
            t.SetApartmentState(ApartmentState.STA);
            t.Start();
            t.Join();
        }
Ejemplo n.º 6
0
        // Common
        public override object VisitFeature_selector_abs([NotNull] GrammarParser.Feature_selector_absContext context)
        {
            // Variables
            string featureIdentifier = context.IDENTIFIER() != null?context.IDENTIFIER().ToString() : null;

            bool             isRootFeatureSelector    = context.ROOTFEATURE() != null ? true : false;
            FeatureSelection matchingFeatureSelection = null;

            // Find the matching FeatureSelection in the ConfigurationInstance
            if (featureIdentifier != null)
            {
                matchingFeatureSelection = configInstance.GetFeatureSelectionByFeatureIdentifier(featureIdentifier);
            }
            else if (isRootFeatureSelector)
            {
                matchingFeatureSelection = configInstance.RootFeatureSelection;
            }

            //
            return(matchingFeatureSelection);
        }
Ejemplo n.º 7
0
        public override object VisitComposite_selector_advanced([NotNull] GrammarParser.Composite_selector_advancedContext context)
        {
            // 1. Visit the children (Feature_selector_abs, Feature_selector_rel and Attribute_selector)
            FeatureSelection absFeatureSelection = (FeatureSelection)Visit(context.feature_selector_abs());


            // 2. Get the matching relative FeatureSelections
            var relativeSelectorType = (int)Visit(context.feature_selector_rel());
            List <FeatureSelection> relativeMatchingFeatureSelections = null;

            if (relativeSelectorType == GrammarParser.DESCENDANTS_KEYWORD)
            {
                relativeMatchingFeatureSelections = configInstance
                                                    .GetDescendantFeatureSelections(absFeatureSelection)
                                                    .Where(featureSel => featureSel.SelectionState == Core.BLOs.FeatureSelectionStates.Selected)
                                                    .ToList();
            }
            else
            {
                throw new Exception("Only >descendants supported by the relative feature selector");
            }


            // 3. Get the matching AttributeValues for all of the relative FeatureSelections
            string attributeIdentifier = (string)Visit(context.attribute_selector());
            List <AttributeValue> matchingAttributeValues = new List <AttributeValue>();

            relativeMatchingFeatureSelections.ForEach(featureSelection =>
            {
                AttributeValue attrVal = featureSelection.AttributeValues.FirstOrDefault(attributeVal => attributeVal.AttributeIdentifier == attributeIdentifier);
                if (attrVal != null)
                {
                    matchingAttributeValues.Add(attrVal);
                }
            });


            return(matchingAttributeValues);
        }
Ejemplo n.º 8
0
        private static void generateTree(DTreeNode currentNode)
        {
            FeatureSelection featureSelection = new FeatureSelection();
            DTreeNode        splitNode        = featureSelection.GetSplitingFeature(currentNode);

            if (splitNode == null)
            {
                return;
            }
            currentNode.entropy = splitNode.entropy;

            if (currentNode.entropy == 0.0)
            {
                currentNode.className = splitNode.className;
                currentNode.isLeaf    = true;
                return;
            }

            currentNode.spliteFeatureName = splitNode.spliteFeatureName;
            currentNode.informationGain   = splitNode.informationGain;


            foreach (DTreeNode child in splitNode.childrenNodes)
            {
                DTreeNode childNode = new DTreeNode();
                childNode.spliteFeatureValue = child.spliteFeatureValue;

                List <FeatureDataPair> featureValuePairs = currentNode.previousFeatureValues.ToList();
                featureValuePairs.Add(new FeatureDataPair(currentNode.spliteFeatureName, childNode.spliteFeatureValue));
                childNode.previousFeatureValues = featureValuePairs;

                childNode.depth = currentNode.depth + 1;

                currentNode.childrenNodes.Add(childNode);

                generateTree(childNode);
            }
        }