// μ、∑计算
        private void mvButton_Click(object sender, EventArgs e)
        {
            ArrayList samples = FeatureHelper.GetFeaturesList();

            MVHelper.SetSampleList(samples);
            ResetResultView();
        }
        private void featureExtractButton_Click(object sender, EventArgs e)
        {
            //FeatureHelper.FeatureExtract();
            #region 检查前提条件
            //无论开测试还是闭测试,都要计算训练样本列表,因此要求训练样本文件列表不为空
            #endregion
            FeatureHelper.ds = new DataSet();
            FeatureHelper.dt = new DataTable();
            GridviewInit();
            featureDataGridView.DataSource = null;
            featureDataGridView.Rows.Clear();
            featureDataGridView.Refresh();

            DataSet   ds  = new DataSet();
            DataTable dt  = new DataTable();
            ArrayList arr = new ArrayList();

            // 或者直接将arr作为参数传入
            FeatureHelper.GetSamplesFeatures(); //初始化训练样本
            arr = FeatureHelper.GetFeaturesList();

            #region 列初始化

            dt.Columns.Add("文件夹", typeof(string));
            dt.Columns.Add("类别", typeof(string));
            string colname = string.Empty;
            for (int i = 2, j = 1; i < 26; i++, j++)
            {
                colname = string.Format("ET1({0})", j.ToString());
                dt.Columns.Add(colname, typeof(string));
            }
            for (int i = 26, j = 1; i < 50; i++, j++)
            {
                colname = string.Format("DT12({0})", j.ToString());
                dt.Columns.Add(colname, typeof(string));
            }

            #endregion

            #region Datatable行设值

            for (int i = 0; i < arr.Count; i++)
            {
                DataRow  row = dt.NewRow();
                Features f   = (Features)arr[i];//装箱
                row[0] = f.Filepath;
                row[1] = f.classID;
                for (int j = 2; j < 50; j++)
                {
                    row[j] = f.feature_vector[j - 2];
                }
                dt.Rows.Add(row);
            }
            ds.Tables.Add(dt);
            this.featureDataGridView.DataSource = ds.Tables[0];

            #endregion
        }
Ejemplo n.º 3
0
 private void ControlInit()
 {
     this.classifyButton.Enabled = false;
     if (FeatureHelper.GetFeaturesList().Count == FeatureHelper.GetTestFeaturesList().Count)
     {
         this.rbKn.Enabled      = false;
         this.rbnearest.Enabled = false;
     }
 }
Ejemplo n.º 4
0
 // 最近邻是否为开测试测试
 public bool NearestCheck()
 {
     // 判断测试样本与训练样本是否一样多,或者判断关于开闭测试的radioButton选择状态
     if (FeatureHelper.GetFeaturesList().Count == FeatureHelper.GetTestFeaturesList().Count)
     {
         MessageBox.Show(this, "最近近邻法首先进行开测试进行样本提取", "提示信息", MessageBoxButtons.OK);
         return(false);
     }
     return(true);
 }
Ejemplo n.º 5
0
        private void KFunctionForm_Load(object sender, EventArgs e)
        {
            #region 数据初始化

            IList  testSampleList = FeatureHelper.GetTestFeaturesList();       //获取原始测试
            KnNear kn             = new KnNear();
            //每个元素都存储在 KeyValuePair<TKey, TValue> 对象中
            IDictionary <int, double> map = new Dictionary <int, double>();
            //每个元素都存储在DictionaryEntry
            IDictionary dictionary = new Hashtable();
            //DictionaryEntry进行循环遍历

            ArrayList klist    = new ArrayList();
            ArrayList ratelist = new ArrayList();

            #endregion

            #region 获取K和识别率

            for (int k = 1; k < 50; k += 2)
            {
                int    testResult   = 0;
                double correctCount = 0;
                double correctRate  = 0.0;
                foreach (Features feature in testSampleList)
                {
                    testResult = kn.DoK_nearest(feature, FeatureHelper.GetFeaturesList(), k);
                    if (testResult > 0)
                    {
                        //检查结果是否正确
                        if (testResult == feature.classID)
                        {
                            correctCount++;
                        }
                    }
                }
                correctRate = (correctCount / Convert.ToDouble(testSampleList.Count)) * 100.0;
                map.Add(k, correctRate / 10);
                klist.Add(k);
                ratelist.Add(correctRate * 2);
            }

            #endregion

            #region 显示点图

            PreviewFunctionImage(klist, ratelist);

            #endregion
        }
 // 重置相关结果视图
 private void ResetResultView()
 {
     classChooseComboBox.Items.Clear();
     classFeatureList = MVHelper.GetClassFeatureList(FeatureHelper.GetFeaturesList());
     //按照类列表中的内容,生成类选择下拉列表的项目
     for (int i = 0; i < classFeatureList.Count; i++)
     {
         Sample sample     = (Sample)classFeatureList[i];
         string classIDStr = "000" + sample.ClassID;
         classChooseComboBox.Items.Add(classIDStr.Substring(classIDStr.Length - 3));
     }
     //初始选择
     classChooseComboBox.SelectedIndex = 0;
     //计算初始选择的结果
     ShowResultView(Int32.Parse((string)this.classChooseComboBox.Items[0]));
 }
Ejemplo n.º 7
0
        //均值u和协方差∑计算
        private void meanToolStripMenuItem_Click(object sender, EventArgs e)
        {
            this.sampleArray = FeatureHelper.GetFeaturesList();
            if (sampleArray == null || sampleArray.Count == 1)
            {
                MessageBox.Show(this, "还没有提取特征值,请按步骤来", "提示信息", MessageBoxButtons.OK);
            }
            else
            {
                MeanCalculateForm mcform = new MeanCalculateForm();
                mcform.ShowDialog();
            }

            #region 测试

            //MeanCalculateForm mcform = new MeanCalculateForm();
            //mcform.ShowDialog();

            #endregion
        }
Ejemplo n.º 8
0
        // 判断K值的合法性
        public bool KCheck(int k)
        {
            if (FeatureHelper.GetFeaturesList().Count == FeatureHelper.GetTestFeaturesList().Count)
            {
                MessageBox.Show(this, "Kn近邻法首先进行开测试进行样本提取", "提示信息", MessageBoxButtons.OK);
                return(false);
            }

            if (k % 2 == 0)
            {
                MessageBox.Show(this, "K 值必须是奇数!", "提示信息", MessageBoxButtons.OK);
                return(false);
            }
            if (k < 1 || k > 49)
            {
                MessageBox.Show(this, "K 值必须在 1 到 49 之间!", "提示信息", MessageBoxButtons.OK);
                return(false);
            }
            return(true);
        }
Ejemplo n.º 9
0
        // 分类运算
        private void classifyButton_Click(object sender, EventArgs e)
        {
            //前提检验
            if (SelectedPCXHelper.GetSelPCXFromLB().Count == 0 || SelectedPCXHelper.GetUnselPCXList().Count == 0)
            {
                MessageBox.Show(this, "您还未提取样本特征,或者还未设置测试样本集!", "提示信息", MessageBoxButtons.OK);
            }

            else
            {
                string correctRate = null; //正确率
                string myfilepath  = filepathText.Text.ToString();

                Features feature;

                #region 这里做一个文件名为unknown.pcx的判断

                string filename = FeatureHelper.GetUnknownName(myfilepath);
                if (filename.ToLower().Equals("unknown"))
                {
                    feature = new Features(myfilepath);
                }
                else
                {
                    int classID = Convert.ToInt32(FeatureHelper.GetUpperFoldername(myfilepath));
                    feature = new Features(myfilepath, classID);
                }

                #endregion

                #region Bayes分类法

                if (rbBayes.Checked)
                {
                    #region 数据初始化

                    CheckInit();
                    double correctCount = 0.0;

                    #endregion

                    IList sampleList = FeatureHelper.GetFeaturesList();            //获取原始训练样本
                    //从降维器获取降维后的新样本
                    IList newSampleList = MDAHelper.GetMDSampleList();
                    MVHelper.SetSampleList((ArrayList)newSampleList);

                    Bayes bayes = Bayes.GetInstance();
                    bayes.TrainSampleList = newSampleList;                 //向贝叶斯分类器注入降维后的训练样本

                    //int classID = Convert.ToInt32(FeatureHelper.GetUpperFoldername(myfilepath));
                    //Features feature = new Features(myfilepath, classID);
                    feature = MDAHelper.MDSample(feature);             //测试样本降维
                    int testClassID = bayes.DecisionFunction(feature); //用贝叶斯决策进行测试样本分类
                    //结果显示
                    lblunknownclassify.Text = testClassID.ToString("000");
                    if (feature.classID == testClassID)
                    {
                        lblerrorinfo.Text      = "Bayes分类法分类正确";
                        lblerrorinfo.ForeColor = Color.Green;
                    }

                    //unknown.pcx处理
                    else if (feature.classID == -1)
                    {
                    }
                    else
                    {
                        lblerrorinfo.Text      = "Bayes分类法分类失败";
                        lblerrorinfo.ForeColor = Color.Green;
                    }
                }

                #endregion

                #region Kn近邻法

                if (rbKn.Checked)
                {
                    #region 相关数据初始化

                    CheckInit();
                    int    testResult   = -1;
                    double correctCount = 0.0;
                    int    kvalue       = Constant.kvalue;

                    #endregion

                    #region  效的情况下进行计算

                    if (KCheck(kvalue))
                    {
                        KnNear my_knearest = new KnNear();

                        //int classID = Convert.ToInt32(FeatureHelper.GetUpperFoldername(myfilepath));
                        //Features currfeature = new Features(myfilepath, classID);
                        testResult = my_knearest.DoK_nearest(feature, FeatureHelper.GetFeaturesList(), kvalue);

                        //testResult为K近邻的分类结果
                        // 其实testResult的结果直接就是result求的值
                        string result = testResult.ToString("000");
                        lblunknownclassify.Text = result;
                        result = ResultConvert(result);

                        int testID = Convert.ToInt32(result);
                        if (testID > 0 && testID == feature.classID)
                        {
                            //correctRate = "分类正确率: " + Constant.kn_Rate;
                            lblerrorinfo.Text      = "Kn近邻法分类正确";
                            lblerrorinfo.ForeColor = Color.Green;
                        }

                        //unknown.pcx处理
                        else if (feature.classID == -1)
                        {
                        }

                        else
                        {
                            lblerrorinfo.Text      = "Kn近邻法分类失败!";
                            lblerrorinfo.ForeColor = Color.Green;
                        }
                    }

                    #endregion
                }

                #endregion

                #region 最近邻法

                if (rbnearest.Checked)
                {
                    #region 初始化

                    CheckInit();
                    int    testResult   = -1;
                    double correctCount = 0.0;

                    #endregion

                    #region 最近邻分类

                    if (NearestCheck())
                    {
                        Nearest nearest = new Nearest();
                        //int classID = Convert.ToInt32(FeatureHelper.GetUpperFoldername(myfilepath));
                        //Features currfeature = new Features(myfilepath, classID);
                        testResult = nearest.Do_Nearest(feature, FeatureHelper.GetFeaturesList());

                        string result = testResult.ToString("000");
                        lblunknownclassify.Text = result;
                        if (testResult > 0 && testResult == feature.classID)
                        {
                            lblerrorinfo.Text      = "最近邻法分类正确";
                            lblerrorinfo.ForeColor = Color.Green;
                        }

                        //unknown.pcx处理
                        else if (feature.classID == -1)
                        {
                        }

                        else
                        {
                            lblerrorinfo.Text      = "最近邻法分类失败!";
                            lblerrorinfo.ForeColor = Color.Green;
                        }
                    }

                    #endregion
                }

                #endregion
            }
        }
Ejemplo n.º 10
0
        private void testButton_Click(object sender, EventArgs e)
        {
            #region 数据初始化

            double correctCount = 0.0;
            double correctRate  = 0.0;
            IList  sampleList   = FeatureHelper.GetFeaturesList();         //获取原始训练样本
            //从降维器获取降维后的新样本
            IList newSampleList = MDAHelper.GetMDSampleList();
            MVHelper.SetSampleList((ArrayList)newSampleList);

            Bayes bayes = Bayes.GetInstance();
            bayes.TrainSampleList = newSampleList;                      //向贝叶斯分类器注入降维后的训练样本

            IList testSampleList = FeatureHelper.GetTestFeaturesList(); //获取测试样本

            #endregion

            #region DataGridView操作

            bayesDataGridView.DataSource = null;
            bayesDataGridView.Rows.Clear();
            bayesDataGridView.Refresh();

            DataSet   ds = new DataSet();
            DataTable dt = new DataTable();
            // 或者直接将arr作为参数传入
            //FeatureHelper.GetSamplesFeatures(); //初始化训练和测试样本

            dt.Columns.Add("文件夹", typeof(string));
            dt.Columns.Add("所属类别", typeof(string));
            dt.Columns.Add("测试类别", typeof(string));
            dt.Columns.Add("正误判断", typeof(string));
            for (int i = 0; i < testSampleList.Count; i++)
            {
                DataRow  row          = dt.NewRow();
                string   rightOrWrong = "×";
                Features feature      = (Features)testSampleList[i];
                row[0] = feature.Filepath;
                row[1] = feature.classID;

                feature = MDAHelper.MDSample(feature);             //测试样本降维
                int testClassID = bayes.DecisionFunction(feature); //用贝叶斯决策进行测试样本分类
                // 用StringBuilder加快字符串处理速度。【值类型和堆类型】
                StringBuilder sb = new StringBuilder();
                sb.Append("类");
                sb.Append(testClassID.ToString());
                sb.ToString();
                row[2] = sb;
                if (feature.classID == testClassID)
                {
                    correctCount++;
                    row[3] = " ";
                }
                else
                {
                    row[3] = rightOrWrong;
                    //this.bayesDataGridView.DefaultCellStyle.ForeColor = Color.Red;
                }

                dt.Rows.Add(row);
            }
            ds.Tables.Add(dt);
            this.bayesDataGridView.DataSource = ds.Tables[0];

            #endregion

            #region Bayes分类性能显示

            correctRate         = (correctCount / Convert.ToDouble(testSampleList.Count)) * 100.0;
            Constant.bayes_Rate = correctRate.ToString("0.000") + "%";
            dataShowLabel.Text  = "测试样本总数 " + testSampleList.Count + " ,Bayes判断正确 " + correctCount + " 个,正确率为:" + Constant.bayes_Rate;

            #endregion
        }
Ejemplo n.º 11
0
        // 获取Dataset数据
        public DataSet GetViewDS(out double ccount, out double crate, out int count)
        {
            #region 数据初始化

            double correctCount = 0;
            double correctRate  = 0.0;
            int    testResult   = 0;

            Nearest nearest = new Nearest();

            IList testSampleList = FeatureHelper.GetTestFeaturesList();        //获取原始测试
            #endregion

            #region DataGridView操作


            dgv_result.DataSource = null;
            dgv_result.Rows.Clear();
            dgv_result.Refresh();

            DataSet   ds = new DataSet();
            DataTable dt = new DataTable();

            dt.Columns.Add("样本路径", typeof(string));
            dt.Columns.Add("样本类", typeof(string));
            dt.Columns.Add("样本测试结果类", typeof(string));
            dt.Columns.Add("正误判断", typeof(string));
            foreach (Features feature in testSampleList)
            {
                testResult = nearest.Do_Nearest(feature, FeatureHelper.GetFeaturesList());
                if (testResult > 0)
                {
                    DataRow row          = dt.NewRow();
                    string  rightOrWrong = "×";
                    row[0] = feature.Filepath;
                    row[1] = feature.classID;
                    row[2] = string.Format("类{0}", testResult);
                    //检查结果是否正确
                    if (testResult == feature.classID)
                    {
                        correctCount++;
                        row[3] = " ";
                    }
                    else
                    {
                        row[3] = rightOrWrong;
                        //this.knDataGridView.DefaultCellStyle.ForeColor = Color.Red;
                    }
                    dt.Rows.Add(row);
                }
            }
            ds.Tables.Add(dt);
            //this.dgv_result.DataSource = ds.Tables[0];
            //SetControlPropertyValue(dgv_result, "DataSource", ds.Tables[0]);

            #endregion

            #region Kn近邻法性能显示
            //correctRate = (correctCount / Convert.ToDouble(testSampleList.Count)) * 100.0;
            //Constant.kn_Rate = correctRate.ToString("0.000") + "%";

            //lbl_result.Text = "测试样本总数 " + testSampleList.Count + " ,Kn近邻法判断正确 "
            //    + correctCount + " 个,正确率为:" + Constant.kn_Rate;

            #endregion

            ccount = correctCount;
            crate  = correctRate;
            count  = testSampleList.Count;

            return(ds);
        }
Ejemplo n.º 12
0
        // 测试启动
        private void knTestButton_Click(object sender, EventArgs e)
        {
            int kvalue = Convert.ToInt32(kValueText.Text);

            Constant.kvalue = kvalue;

            #region K有效的情况下进行计算

            if (KCheck(kvalue))
            {
                #region 数据初始化

                double correctCount = 0;
                double correctRate  = 0.0;
                int    testResult   = 0;

                KnNear my_knearest = new KnNear();

                IList testSampleList = FeatureHelper.GetTestFeaturesList();        //获取原始测试
                #endregion

                #region DataGridView操作

                knDataGridView.DataSource = null;
                knDataGridView.Rows.Clear();
                knDataGridView.Refresh();

                DataSet   ds = new DataSet();
                DataTable dt = new DataTable();

                dt.Columns.Add("样本路径", typeof(string));
                dt.Columns.Add("样本测试结果类", typeof(string));
                dt.Columns.Add("所取K值", typeof(string));
                dt.Columns.Add("正误判断", typeof(string));
                foreach (Features feature in testSampleList)
                {
                    testResult = my_knearest.DoK_nearest(feature, FeatureHelper.GetFeaturesList(), kvalue);
                    if (testResult > 0)
                    {
                        DataRow row          = dt.NewRow();
                        string  rightOrWrong = "×";
                        row[0] = feature.Filepath;
                        row[1] = string.Format("类{0}", testResult);
                        row[2] = kvalue;
                        //检查结果是否正确
                        if (testResult == feature.classID)
                        {
                            correctCount++;
                            row[3] = " ";
                        }
                        else
                        {
                            row[3] = rightOrWrong;
                            //this.knDataGridView.DefaultCellStyle.ForeColor = Color.Red;
                        }
                        dt.Rows.Add(row);
                    }
                }
                ds.Tables.Add(dt);
                this.knDataGridView.DataSource = ds.Tables[0];

                #endregion

                #region Kn近邻法性能显示
                correctRate      = (correctCount / Convert.ToDouble(testSampleList.Count)) * 100.0;
                Constant.kn_Rate = correctRate.ToString("0.000") + "%";

                resultLabel.Text = "测试样本总数 " + testSampleList.Count + " ,Kn近邻法判断正确 "
                                   + correctCount + " 个,正确率为:" + Constant.kn_Rate;

                #endregion
            }

            #endregion
        }