Ejemplo n.º 1
0
        /// <summary>
        /// Create <see cref="FastTreeBinaryFeaturizationEstimator"/>, which uses <see cref="FastTreeBinaryTrainer"/> to train <see cref="TreeEnsembleModelParameters"/> to create tree-based features.
        /// </summary>
        /// <param name="catalog">The context <see cref="TransformsCatalog"/> to create <see cref="FastTreeBinaryFeaturizationEstimator"/>.</param>
        /// <param name="options">The options to configure <see cref="FastTreeBinaryFeaturizationEstimator"/>. See <see cref="FastTreeBinaryFeaturizationEstimator.Options"/> and
        /// <see cref="TreeEnsembleFeaturizationEstimatorBase.OptionsBase"/> for available settings.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[FeaturizeByFastTreeBinary](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/TreeFeaturization/FastTreeBinaryFeaturizationWithOptions.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static FastTreeBinaryFeaturizationEstimator FeaturizeByFastTreeBinary(this TransformsCatalog catalog,
                                                                                     FastTreeBinaryFeaturizationEstimator.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastTreeBinaryFeaturizationEstimator(env, options));
        }
Ejemplo n.º 2
0
        public void TestFastTreeBinaryFeaturizationInPipelineWithOptionalOutputs()
        {
            int dataPointCount = 200;
            var data           = SamplesUtils.DatasetUtils.GenerateBinaryLabelFloatFeatureVectorFloatWeightSamples(dataPointCount).ToList();
            var dataView       = ML.Data.LoadFromEnumerable(data);

            dataView = ML.Data.Cache(dataView);

            var trainerOptions = new FastTreeBinaryTrainer.Options
            {
                NumberOfThreads            = 1,
                NumberOfTrees              = 10,
                NumberOfLeaves             = 4,
                MinimumExampleCountPerLeaf = 10,
                FeatureColumnName          = "Features",
                LabelColumnName            = "Label"
            };

            var options = new FastTreeBinaryFeaturizationEstimator.Options()
            {
                InputColumnName  = "Features",
                TrainerOptions   = trainerOptions,
                TreesColumnName  = null,
                PathsColumnName  = null,
                LeavesColumnName = "Leaves"
            };


            bool isWrong = false;

            try
            {
                var wrongPipeline = ML.Transforms.FeaturizeByFastTreeBinary(options)
                                    .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Trees", "Leaves", "Paths"))
                                    .Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures"));
                var wrongModel = wrongPipeline.Fit(dataView);
            }
            catch
            {
                isWrong = true; // Only "Leaves" is produced by the tree featurizer, so accessing "Trees" and "Paths" will lead to an error.
            }
            Assert.True(isWrong);

            var pipeline = ML.Transforms.FeaturizeByFastTreeBinary(options)
                           .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Leaves"))
                           .Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures"));
            var model      = pipeline.Fit(dataView);
            var prediction = model.Transform(dataView);
            var metrics    = ML.BinaryClassification.Evaluate(prediction);

            Assert.True(metrics.Accuracy > 0.98);
            Assert.True(metrics.LogLoss < 0.05);
            Assert.True(metrics.AreaUnderPrecisionRecallCurve > 0.98);
        }
Ejemplo n.º 3
0
        public void TestFastTreeBinaryFeaturizationInPipeline()
        {
            int dataPointCount = 200;
            var data           = SamplesUtils.DatasetUtils.GenerateBinaryLabelFloatFeatureVectorFloatWeightSamples(dataPointCount).ToList();
            var dataView       = ML.Data.LoadFromEnumerable(data);

            dataView = ML.Data.Cache(dataView);

            var trainerOptions = new FastTreeBinaryTrainer.Options
            {
                NumberOfThreads            = 1,
                NumberOfTrees              = 10,
                NumberOfLeaves             = 4,
                MinimumExampleCountPerLeaf = 10,
                FeatureColumnName          = "Features",
                LabelColumnName            = "Label"
            };

            var options = new FastTreeBinaryFeaturizationEstimator.Options()
            {
                InputColumnName  = "Features",
                TreesColumnName  = "Trees",
                LeavesColumnName = "Leaves",
                PathsColumnName  = "Paths",
                TrainerOptions   = trainerOptions
            };

            var pipeline = ML.Transforms.FeaturizeByFastTreeBinary(options)
                           .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Trees", "Leaves", "Paths"))
                           .Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures"));
            var model      = pipeline.Fit(dataView);
            var prediction = model.Transform(dataView);
            var metrics    = ML.BinaryClassification.Evaluate(prediction);

            Assert.True(metrics.Accuracy > 0.98);
            Assert.True(metrics.LogLoss < 0.05);
            Assert.True(metrics.AreaUnderPrecisionRecallCurve > 0.98);
        }
Ejemplo n.º 4
0
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for exception tracking and logging,
            // as a catalog of available operations and as the source of randomness.
            // Setting the seed to a fixed number in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of data points to be transformed.
            var dataPoints = GenerateRandomDataPoints(100).ToList();

            // Convert the list of data points to an IDataView object, which is consumable by ML.NET API.
            var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);

            // ML.NET doesn't cache data set by default. Therefore, if one reads a data set from a file and accesses it many times,
            // it can be slow due to expensive featurization and disk operations. When the considered data can fit into memory,
            // a solution is to cache the data in memory. Caching is especially helpful when working with iterative algorithms
            // which needs many data passes.
            dataView = mlContext.Data.Cache(dataView);

            // Define input and output columns of tree-based featurizer.
            string labelColumnName   = nameof(DataPoint.Label);
            string featureColumnName = nameof(DataPoint.Features);
            string treesColumnName   = nameof(TransformedDataPoint.Trees);
            string leavesColumnName  = nameof(TransformedDataPoint.Leaves);
            string pathsColumnName   = nameof(TransformedDataPoint.Paths);

            // Define the configuration of the trainer used to train a tree-based model.
            var trainerOptions = new FastTreeBinaryTrainer.Options
            {
                // Use L2Norm for early stopping.
                EarlyStoppingMetric = EarlyStoppingMetric.L2Norm,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 3.
                NumberOfTrees = 3,
                // Number of leaves per tree.
                NumberOfLeaves = 6,
                // Feature column name.
                FeatureColumnName = featureColumnName,
                // Label column name.
                LabelColumnName = labelColumnName
            };

            // Define the tree-based featurizer's configuration.
            var options = new FastTreeBinaryFeaturizationEstimator.Options
            {
                InputColumnName  = featureColumnName,
                TreesColumnName  = treesColumnName,
                LeavesColumnName = leavesColumnName,
                PathsColumnName  = pathsColumnName,
                TrainerOptions   = trainerOptions
            };

            // Define the featurizer.
            var pipeline = mlContext.Transforms.FeaturizeByFastTreeBinary(options);

            // Train the model.
            var model = pipeline.Fit(dataView);

            // Apply the trained transformer to the considered data set.
            var transformed = model.Transform(dataView);

            // Convert IDataView object to a list. Each element in the resulted list corresponds to a row in the IDataView.
            var transformedDataPoints = mlContext.Data.CreateEnumerable <TransformedDataPoint>(transformed, false).ToList();

            // Print out the transformation of the first 3 data points.
            for (int i = 0; i < 3; ++i)
            {
                var dataPoint            = dataPoints[i];
                var transformedDataPoint = transformedDataPoints[i];
                Console.WriteLine($"The original feature vector [{String.Join(",", dataPoint.Features)}] is transformed to three different tree-based feature vectors:");
                Console.WriteLine($"  Trees' output values: [{String.Join(",", transformedDataPoint.Trees)}].");
                Console.WriteLine($"  Leave IDs' 0-1 representation: [{String.Join(",", transformedDataPoint.Leaves)}].");
                Console.WriteLine($"  Paths IDs' 0-1 representation: [{String.Join(",", transformedDataPoint.Paths)}].");
            }

            // Expected output:
            //   The original feature vector [0.8173254,0.7680227,0.5581612] is transformed to three different tree-based feature vectors:
            //     Trees' output values: [0.5714286,0.4636412,0.535588].
            //     Leave IDs' 0-1 representation: [0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1].
            //     Paths IDs' 0-1 representation: [1,0,0,1,1,1,0,1,0,1,1,1,1,1,1].
            //   The original feature vector [0.5888848,0.9360271,0.4721779] is transformed to three different tree-based feature vectors:
            //     Trees' output values: [0.2352941,-0.1382389,0.535588].
            //     Leave IDs' 0-1 representation: [0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1].
            //     Paths IDs' 0-1 representation: [1,0,0,1,1,1,0,1,0,1,1,1,1,1,1].
            //   The original feature vector [0.2737045,0.2919063,0.4673147] is transformed to three different tree-based feature vectors:
            //     Trees' output values: [0.2352941,-0.1382389,-0.2184284].
            //     Leave IDs' 0-1 representation: [0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0].
            //     Paths IDs' 0-1 representation: [1,0,0,1,1,1,0,1,0,1,1,1,0,0,0].
        }