Ejemplo n.º 1
0
        private void findClusters(List <FastIDSet> newClusters)
        {
            if (clusteringByThreshold)
            {
                KeyValuePair <FastIDSet, FastIDSet> nearestPair = findNearestClusters(newClusters);
                FastIDSet _cluster1 = nearestPair.Key;
                FastIDSet _cluster2 = nearestPair.Value;

                if (_cluster1 != null && _cluster2 != null)
                {
                    FastIDSet cluster1 = _cluster1;
                    FastIDSet cluster2 = _cluster2;
                    while (clusterSimilarity.getSimilarity(cluster1, cluster2) >= clusteringThreshold)
                    {
                        newClusters.Remove(cluster1);
                        newClusters.Remove(cluster2);
                        FastIDSet merged = new FastIDSet(cluster1.size() + cluster2.size());
                        merged.addAll(cluster1);
                        merged.addAll(cluster2);
                        newClusters.Add(merged);
                        nearestPair = findNearestClusters(newClusters);
                        var __cluster1 = nearestPair.Key;
                        var __cluster2 = nearestPair.Value;
                        if (__cluster1 == null || __cluster2 == null)
                        {
                            break;
                        }
                        cluster1 = __cluster1;
                        cluster2 = __cluster2;
                    }
                }
            }
            else
            {
                while (newClusters.Count > numClusters)
                {
                    KeyValuePair <FastIDSet, FastIDSet> nearestPair = findNearestClusters(newClusters);
                    FastIDSet _cluster1 = nearestPair.Key;
                    FastIDSet _cluster2 = nearestPair.Value;
                    if (_cluster1 == null || _cluster2 == null)
                    {
                        break;
                    }
                    FastIDSet cluster1 = _cluster1;
                    FastIDSet cluster2 = _cluster2;
                    newClusters.Remove(cluster1);
                    newClusters.Remove(cluster2);
                    FastIDSet merged = new FastIDSet(cluster1.size() + cluster2.size());
                    merged.addAll(cluster1);
                    merged.addAll(cluster2);
                    newClusters.Add(merged);
                }
            }
        }
Ejemplo n.º 2
0
        protected override FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel)
        {
            FastIDSet set = new FastIDSet();

            foreach (long num in preferredItemIDs)
            {
                set.addAll(this.similarity.allSimilarItemIDs(num));
            }
            set.removeAll(preferredItemIDs);
            return(set);
        }
Ejemplo n.º 3
0
        protected FastIDSet getAllOtherItems(long[] theNeighborhood, long theUserID)
        {
            DataModel model = this.getDataModel();
            FastIDSet set   = new FastIDSet();

            foreach (long num in theNeighborhood)
            {
                set.addAll(model.getItemIDsFromUser(num));
            }
            set.removeAll(model.getItemIDsFromUser(theUserID));
            return(set);
        }
Ejemplo n.º 4
0
 private void addSomeOf(FastIDSet possibleItemIDs, FastIDSet itemIDs)
 {
     if (itemIDs.size() > this.maxItemsPerUser)
     {
         SamplingLongPrimitiveIterator iterator = new SamplingLongPrimitiveIterator(itemIDs.GetEnumerator(), ((double)this.maxItemsPerUser) / ((double)itemIDs.size()));
         while (iterator.MoveNext())
         {
             possibleItemIDs.add(iterator.Current);
         }
     }
     else
     {
         possibleItemIDs.addAll(itemIDs);
     }
 }
Ejemplo n.º 5
0
        protected override FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel)
        {
            FastIDSet set = new FastIDSet();

            foreach (long num in preferredItemIDs)
            {
                PreferenceArray array = dataModel.getPreferencesForItem(num);
                int             num2  = array.length();
                for (int i = 0; i < num2; i++)
                {
                    set.addAll(dataModel.getItemIDsFromUser(array.getUserID(i)));
                }
            }
            set.removeAll(preferredItemIDs);
            return(set);
        }
Ejemplo n.º 6
0
        private void updateAllRecommendableItems()
        {
            FastIDSet ids = new FastIDSet(dataModel.getNumItems());

            foreach (var entry in averageDiffs.entrySet())
            {
                ids.add(entry.Key);
                var it = entry.Value.Keys;
                foreach (var item in it)
                {
                    ids.add(item);
                }
            }
            allRecommendableItemIDs.clear();
            allRecommendableItemIDs.addAll(ids);
            allRecommendableItemIDs.rehash();
        }
Ejemplo n.º 7
0
        private List <RecommendedItem> computeTopRecsForCluster(FastIDSet cluster)
        {
            DataModel dataModel       = getDataModel();
            FastIDSet possibleItemIDs = new FastIDSet();
            var       it = cluster.GetEnumerator();

            while (it.MoveNext())
            {
                possibleItemIDs.addAll(dataModel.getItemIDsFromUser(it.Current));
            }

            TopItems.Estimator <long> estimator = new Estimator(cluster, this);

            List <RecommendedItem> topItems = TopItems.getTopItems(NUM_CLUSTER_RECS,
                                                                   possibleItemIDs.GetEnumerator(), null, estimator);

            log.debug("Recommendations are: {}", topItems);
            return(topItems);
        }
        public GenericBooleanPrefDataModel(FastByIDMap <FastIDSet> userData, FastByIDMap <FastByIDMap <DateTime?> > timestamps)
        {
            this.preferenceFromUsers = userData;
            this.preferenceForItems  = new FastByIDMap <FastIDSet>();
            FastIDSet set = new FastIDSet();

            foreach (KeyValuePair <long, FastIDSet> pair in this.preferenceFromUsers.entrySet())
            {
                long      key = pair.Key;
                FastIDSet c   = pair.Value;
                set.addAll(c);
                IEnumerator <long> enumerator = c.GetEnumerator();
                while (enumerator.MoveNext())
                {
                    long      current = enumerator.Current;
                    FastIDSet set3    = this.preferenceForItems.get(current);
                    if (set3 == null)
                    {
                        set3 = new FastIDSet(2);
                        this.preferenceForItems.put(current, set3);
                    }
                    set3.add(key);
                }
            }
            this.itemIDs = set.toArray();
            set          = null;
            Array.Sort <long>(this.itemIDs);
            this.userIDs = new long[userData.size()];
            int num3 = 0;
            IEnumerator <long> enumerator2 = userData.Keys.GetEnumerator();

            while (enumerator2.MoveNext())
            {
                this.userIDs[num3++] = enumerator2.Current;
            }
            Array.Sort <long>(this.userIDs);
            this.timestamps = timestamps;
        }
Ejemplo n.º 9
0
        private bool mergeClosestClusters(int numUsers, List <FastIDSet> clusters, bool done)
        {
            // We find a certain number of closest clusters...
            List <ClusterClusterPair> queue = findClosestClusters(numUsers, clusters);

            //  List<ClusterClusterPair> queue = new List<ClusterClusterPair>();
            //foreach (var item in _queue)
            //{
            //    queue.Enqueue(item);
            //}

            // The first one is definitely the closest pair in existence so we can cluster
            // the two together, put it back into the set of clusters, and start again. Instead
            // we assume everything else in our list of closest cluster pairs is still pretty good,
            // and we cluster them too.

            for (int n = 0; n < queue.Count; n++)
            {
                //}
                //while (queue.Count > 0)
                //{
                if (!clusteringByThreshold && clusters.Count <= numClusters)
                {
                    done = true;
                    break;
                }

                ClusterClusterPair top = queue[n];
                queue.RemoveAt(n);
                if (clusteringByThreshold && top.getSimilarity() < clusteringThreshold)
                {
                    done = true;
                    break;
                }

                FastIDSet cluster1 = top.getCluster1();
                FastIDSet cluster2 = top.getCluster2();

                // Pull out current two clusters from clusters
                var  clusterIterator = clusters;
                bool removed1        = false;
                bool removed2        = false;
                for (int m = 0; m < clusterIterator.Count; m++)
                {
                    if (!(removed1 && removed2))
                    {
                        FastIDSet current = clusterIterator[m];

                        // Yes, use == here
                        if (!removed1 && cluster1 == current)
                        {
                            clusterIterator.RemoveAt(m);
                            m--;
                            removed1 = true;
                        }
                        else if (!removed2 && cluster2 == current)
                        {
                            clusterIterator.RemoveAt(m);
                            m--;
                            removed2 = true;
                        }
                    }

                    // The only catch is if a cluster showed it twice in the list of best cluster pairs;
                    // have to remove the others. Pull out anything referencing these clusters from queue
                    for (int k = 0; k < queue.Count; k++)
                    {
                        //}

                        //    for (Iterator<ClusterClusterPair> queueIterator = queue.iterator(); queueIterator.hasNext(); )
                        //    {
                        ClusterClusterPair pair  = queue[k];
                        FastIDSet          pair1 = pair.getCluster1();
                        FastIDSet          pair2 = pair.getCluster2();
                        if (pair1 == cluster1 || pair1 == cluster2 || pair2 == cluster1 || pair2 == cluster2)
                        {
                            queue.RemoveAt(k);
                            //queueIterator.remove();
                        }
                    }

                    // Make new merged cluster
                    FastIDSet merged = new FastIDSet(cluster1.size() + cluster2.size());
                    merged.addAll(cluster1);
                    merged.addAll(cluster2);

                    // Compare against other clusters; update queue if needed
                    // That new pair we're just adding might be pretty close to something else, so
                    // catch that case here and put it back into our queue
                    for (var i = 0; i < clusters.Count; i++)
                    {
                        FastIDSet cluster    = clusters[i];
                        double    similarity = clusterSimilarity.getSimilarity(merged, cluster);
                        if (similarity > queue[queue.Count - 1].getSimilarity())
                        {
                            var queueIterator = queue.GetEnumerator();

                            while (queueIterator.MoveNext())
                            {
                                if (similarity > queueIterator.Current.getSimilarity())
                                {
                                    n--;
                                    // queueIterator.previous();
                                    break;
                                }
                            }
                            queue.Add(new ClusterClusterPair(merged, cluster, similarity));
                        }
                    }

                    // Finally add new cluster to list
                    clusters.Add(merged);
                }
            }
            return(done);
        }