public Vector3 FindEdgeDir(EdgeOrder edge)
 {
     return(FindEdgeDir((int)edge));
 }
        /// <summary>
        /// IDWriteTextLayout::Draw calls this function to instruct the client to render a run of glyphs.
        /// </summary>
        /// <param name="clientDrawingContext">The application-defined drawing context passed to  <see cref="M:SharpDX.DirectWrite.TextLayout.Draw_(System.IntPtr,System.IntPtr,System.Single,System.Single)" />.</param>
        /// <param name="baselineOriginX">The pixel location (X-coordinate) at the baseline origin of the glyph run.</param>
        /// <param name="baselineOriginY">The pixel location (Y-coordinate) at the baseline origin of the glyph run.</param>
        /// <param name="measuringMode">The measuring method for glyphs in the run, used with the other properties to determine the rendering mode.</param>
        /// <param name="glyphRun">Pointer to the glyph run instance to render.</param>
        /// <param name="glyphRunDescription">A pointer to the optional glyph run description instance which contains properties of the characters  associated with this run.</param>
        /// <param name="clientDrawingEffect">Application-defined drawing effects for the glyphs to render. Usually this argument represents effects such as the foreground brush filling the interior of text.</param>
        /// <returns>
        /// If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.
        /// </returns>
        /// <unmanaged>HRESULT DrawGlyphRun([None] void* clientDrawingContext,[None] FLOAT baselineOriginX,[None] FLOAT baselineOriginY,[None] DWRITE_MEASURING_MODE measuringMode,[In] const DWRITE_GLYPH_RUN* glyphRun,[In] const DWRITE_GLYPH_RUN_DESCRIPTION* glyphRunDescription,[None] IUnknown* clientDrawingEffect)</unmanaged>
        /// <remarks>
        /// The <see cref="M:SharpDX.DirectWrite.TextLayout.Draw_(System.IntPtr,System.IntPtr,System.Single,System.Single)" /> function calls this callback function with all the information about glyphs to render. The application implements this callback by mostly delegating the call to the underlying platform's graphics API such as {{Direct2D}} to draw glyphs on the drawing context. An application that uses GDI can implement this callback in terms of the <see cref="M:SharpDX.DirectWrite.BitmapRenderTarget.DrawGlyphRun(System.Single,System.Single,SharpDX.Direct2D1.MeasuringMode,SharpDX.DirectWrite.GlyphRun,SharpDX.DirectWrite.RenderingParams,SharpDX.Color4)" /> method.
        /// </remarks>
        public override SDX.Result DrawGlyphRun(
            object clientDrawingContext, float baselineOriginX, float baselineOriginY,
            MeasuringMode measuringMode, GlyphRun glyphRun, GlyphRunDescription glyphRunDescription, SDX.ComObject clientDrawingEffect)
        {
            if ((glyphRun.Indices == null) ||
                (glyphRun.Indices.Length == 0))
            {
                return(SDX.Result.Ok);;
            }

            SharpDX.DirectWrite.Factory dWriteFactory = GraphicsCore.Current.FactoryDWrite;
            SharpDX.Direct2D1.Factory   d2DFactory    = GraphicsCore.Current.FactoryD2D;

            // Extrude geometry data out of given glyph run
            SimplePolygon2DGeometrySink geometryExtruder = new SimplePolygon2DGeometrySink(new Vector2(baselineOriginX, baselineOriginY));

            using (PathGeometry pathGeometry = new PathGeometry(d2DFactory))
            {
                // Write all geometry data into a standard PathGeometry object
                using (GeometrySink geoSink = pathGeometry.Open())
                {
                    glyphRun.FontFace.GetGlyphRunOutline(
                        glyphRun.FontSize,
                        glyphRun.Indices,
                        glyphRun.Advances,
                        glyphRun.Offsets,
                        glyphRun.IsSideways,
                        glyphRun.BidiLevel % 2 == 1,
                        geoSink);
                    geoSink.Close();
                }

                // Simplify written geometry and write it into own structure
                pathGeometry.Simplify(GeometrySimplificationOption.Lines, m_geometryOptions.SimplificationFlatternTolerance, geometryExtruder);
            }

            // Structure for caching the result
            VertexStructure        tempStructure = new VertexStructure();
            VertexStructureSurface tempSurface   = tempStructure.CreateSurface();

            // Create the text surface
            if (m_geometryOptions.MakeSurface)
            {
                // Separate polygons by clock direction
                // Order polygons as needed for further hole finding algorithm
                IEnumerable <Polygon2D> fillingPolygons = geometryExtruder.GeneratedPolygons
                                                          .Where(actPolygon => actPolygon.EdgeOrder == EdgeOrder.CounterClockwise)
                                                          .OrderBy(actPolygon => actPolygon.BoundingBox.Size.X * actPolygon.BoundingBox.Size.Y);
                List <Polygon2D> holePolygons = geometryExtruder.GeneratedPolygons
                                                .Where(actPolygon => actPolygon.EdgeOrder == EdgeOrder.Clockwise)
                                                .OrderByDescending(actPolygon => actPolygon.BoundingBox.Size.X * actPolygon.BoundingBox.Size.Y)
                                                .ToList();

                // Build geometry for all polygons
                int loopPolygon = 0;
                foreach (Polygon2D actFillingPolygon in fillingPolygons)
                {
                    // Find all corresponding holes
                    BoundingBox2D           actFillingPolygonBounds = actFillingPolygon.BoundingBox;
                    IEnumerable <Polygon2D> correspondingHoles      = holePolygons
                                                                      .Where(actHolePolygon => actHolePolygon.BoundingBox.IsContainedBy(actFillingPolygonBounds))
                                                                      .ToList();

                    // Two steps here:
                    // - Merge current filling polygon and all its holes.
                    // - Remove found holes from current hole list
                    Polygon2D      polygonForRendering     = actFillingPolygon;
                    Polygon2D      polygonForTriangulation = actFillingPolygon.Clone();
                    List <Vector2> cutPoints = new List <Vector2>();
                    foreach (Polygon2D actHole in correspondingHoles)
                    {
                        holePolygons.Remove(actHole);
                        polygonForRendering     = polygonForRendering.MergeWithHole(actHole, Polygon2DMergeOptions.Default, cutPoints);
                        polygonForTriangulation = polygonForTriangulation.MergeWithHole(actHole, new Polygon2DMergeOptions()
                        {
                            MakeMergepointSpaceForTriangulation = true
                        });
                    }

                    loopPolygon++;
                    int actBaseIndex = (int)tempStructure.CountVertices;

                    EdgeOrder edgeOrder = polygonForRendering.EdgeOrder;
                    float     edgeSize  = edgeOrder == EdgeOrder.CounterClockwise ? 0.1f : 0.4f;

                    // Append all vertices to temporary VertexStructure
                    for (int loop = 0; loop < polygonForRendering.Vertices.Count; loop++)
                    {
                        // Calculate 3d location and texture coordinate
                        Vector3 actVertexLocation = new Vector3(
                            polygonForRendering.Vertices[loop].X,
                            0f,
                            polygonForRendering.Vertices[loop].Y);
                        Vector2 actTexCoord = new Vector2(
                            (polygonForRendering.Vertices[loop].X - polygonForRendering.BoundingBox.Location.X) / polygonForRendering.BoundingBox.Size.X,
                            (polygonForRendering.Vertices[loop].Y - polygonForRendering.BoundingBox.Location.Y) / polygonForRendering.BoundingBox.Size.Y);
                        if (float.IsInfinity(actTexCoord.X) || float.IsNaN(actTexCoord.X))
                        {
                            actTexCoord.X = 0f;
                        }
                        if (float.IsInfinity(actTexCoord.Y) || float.IsNaN(actTexCoord.Y))
                        {
                            actTexCoord.Y = 0f;
                        }

                        // Append the vertex to the result
                        tempStructure.AddVertex(
                            new Vertex(
                                actVertexLocation,
                                m_geometryOptions.SurfaceVertexColor,
                                actTexCoord,
                                new Vector3(0f, 1f, 0f)));
                    }

                    // Generate cubes on each vertex if requested
                    if (m_geometryOptions.GenerateCubesOnVertices)
                    {
                        for (int loop = 0; loop < polygonForRendering.Vertices.Count; loop++)
                        {
                            Color4 colorToUse      = Color4.GreenColor;
                            float  pointRenderSize = 0.1f;
                            if (cutPoints.Contains(polygonForRendering.Vertices[loop]))
                            {
                                colorToUse      = Color4.RedColor;
                                pointRenderSize = 0.15f;
                            }

                            Vector3 actVertexLocation = new Vector3(
                                polygonForRendering.Vertices[loop].X,
                                0f,
                                polygonForRendering.Vertices[loop].Y);
                            tempSurface.BuildCube24V(actVertexLocation, pointRenderSize, colorToUse);
                        }
                    }

                    // Triangulate the polygon
                    IEnumerable <int> triangleIndices = polygonForTriangulation.TriangulateUsingCuttingEars();
                    if (triangleIndices == null)
                    {
                        continue;
                    }
                    if (triangleIndices == null)
                    {
                        throw new SeeingSharpGraphicsException("Unable to triangulate given PathGeometry object!");
                    }

                    // Append all triangles to the temporary structure
                    using (IEnumerator <int> indexEnumerator = triangleIndices.GetEnumerator())
                    {
                        while (indexEnumerator.MoveNext())
                        {
                            int index1 = indexEnumerator.Current;
                            int index2 = 0;
                            int index3 = 0;

                            if (indexEnumerator.MoveNext())
                            {
                                index2 = indexEnumerator.Current;
                            }
                            else
                            {
                                break;
                            }
                            if (indexEnumerator.MoveNext())
                            {
                                index3 = indexEnumerator.Current;
                            }
                            else
                            {
                                break;
                            }

                            tempSurface.AddTriangle(
                                (int)(actBaseIndex + index3),
                                (int)(actBaseIndex + index2),
                                (int)(actBaseIndex + index1));
                        }
                    }
                }
            }

            // Make volumetric outlines
            int triangleCountWithoutSide = tempSurface.CountTriangles;

            if (m_geometryOptions.MakeVolumetricText)
            {
                float volumetricTextDepth = m_geometryOptions.VolumetricTextDepth;
                if (m_geometryOptions.VerticesScaleFactor > 0f)
                {
                    volumetricTextDepth = volumetricTextDepth / m_geometryOptions.VerticesScaleFactor;
                }

                // Add all side surfaces
                foreach (Polygon2D actPolygon in geometryExtruder.GeneratedPolygons)
                {
                    foreach (Line2D actLine in actPolygon.Lines)
                    {
                        tempSurface.BuildRect4V(
                            new Vector3(actLine.StartPosition.X, -volumetricTextDepth, actLine.StartPosition.Y),
                            new Vector3(actLine.EndPosition.X, -volumetricTextDepth, actLine.EndPosition.Y),
                            new Vector3(actLine.EndPosition.X, 0f, actLine.EndPosition.Y),
                            new Vector3(actLine.StartPosition.X, 0f, actLine.StartPosition.Y),
                            m_geometryOptions.VolumetricSideSurfaceVertexColor);
                    }
                }
            }

            // Do also make back surface?
            if (m_geometryOptions.MakeBackSurface)
            {
                for (int loop = 0; loop < triangleCountWithoutSide; loop++)
                {
                    Triangle triangle     = tempSurface.Triangles[loop];
                    Vertex   vertex0      = tempStructure.Vertices[triangle.Index1];
                    Vertex   vertex1      = tempStructure.Vertices[triangle.Index2];
                    Vertex   vertex2      = tempStructure.Vertices[triangle.Index3];
                    Vector3  changeVector = new Vector3(0f, -m_geometryOptions.VolumetricTextDepth, 0f);

                    tempSurface.AddTriangle(
                        vertex2.Copy(vertex2.Position - changeVector, Vector3.Negate(vertex2.Normal)),
                        vertex1.Copy(vertex1.Position - changeVector, Vector3.Negate(vertex1.Normal)),
                        vertex0.Copy(vertex0.Position - changeVector, Vector3.Negate(vertex0.Normal)));
                }
            }

            // TODO: Make this configurable
            tempStructure.ToggleCoordinateSystem();

            // Scale the text using given scale factor
            if (m_geometryOptions.VerticesScaleFactor > 0f)
            {
                Matrix4x4 scaleMatrix = Matrix4x4.CreateScale(
                    m_geometryOptions.VerticesScaleFactor,
                    m_geometryOptions.VerticesScaleFactor,
                    m_geometryOptions.VerticesScaleFactor);

                Matrix4Stack transformMatrix = new Matrix4Stack(scaleMatrix);
                transformMatrix.TransformLocal(m_geometryOptions.VertexTransform);

                tempStructure.UpdateVerticesUsingRelocationFunc((actVector) => Vector3.Transform(actVector, transformMatrix.Top));
            }

            // Calculate all normals before adding to target structure
            if (m_geometryOptions.CalculateNormals)
            {
                tempStructure.CalculateNormalsFlat();
            }

            // Merge temporary structure to target structure
            m_targetSurface.AddStructure(tempStructure);

            return(SDX.Result.Ok);
        }