public void TestDiscreteKalmanFilter()
        {
            // Test constants
            double r = 30.0;  // Measurement covariance
            double T = 20.0;  // Time interval between measurements
            double q = 0.1;   // Plant noise constant
            double tol = 0.0001;  // Accuracy tolerance

            // Reference values to test against (generated from a known filter)
            // Reference Measurements
            double[] zs = { 290.16851039,654.55633793,968.97141280,1325.09197161,1636.35947675,1974.39053148,2260.80770553,2574.36119750,2901.32285462,3259.14709098};
            // Expected position estimates (predictions)
            double[] posp = {1018.94416547,1237.00029618,1754.97092716,1855.62596430,2400.27521403,2446.47067625,2978.94381631,3173.63724675};
            // Expected velocity estimates (predictions)
            double[] velp = { 18.21939138,13.38351136,21.52280841,10.92729947,21.32868461,9.24370334,20.26482836,13.59419761 };
            // Expected position estimates (after measurement update)
            double[] posu = { 969.33006892,1324.51475894,1637.07997492,1973.70152187,2261.59660945,2573.64724909,2901.75329465,3258.67447647 };
            // Expected velocity estimates (after measurement update)
            double[] velu = { 13.38351136,21.52280841,10.92729947,21.32868461,9.24370334,20.26482836,13.59419761,20.93270702 };

            // Initial estimate based on two point differencing
            double z0 = zs[0];
            double z1 = zs[1];
            Matrix<double> x0 = Matrix<double>.Build.Dense(2, 1, new[] { z1, (z1 - z0)/T });
            Matrix<double> P0 = Matrix<double>.Build.Dense(2, 2, new[] { r, r/T, r/T, 2*r/(T*T) });
            // Setup a DiscreteKalmanFilter to filter
            DiscreteKalmanFilter dkf = new DiscreteKalmanFilter(x0, P0);
            Matrix<double> F = Matrix<double>.Build.Dense(2, 2, new[] { 1d, 0d, T, 1 });   // State transition matrix
            Matrix<double> G = Matrix<double>.Build.Dense(2, 1, new[] { (T * T) / 2d, T });   // Plant noise matrix
            Matrix<double> Q = Matrix<double>.Build.Dense(1, 1, new[] { q }); // Plant noise variance
            Matrix<double> R = Matrix<double>.Build.Dense(1, 1, new[] { r }); // Measurement variance matrix
            Matrix<double> H = Matrix<double>.Build.Dense(1, 2, new[] { 1d, 0d }); // Measurement matrix

            // Test the performance of this filter against the stored data from a proven
            // Kalman Filter of a one dimenional tracker.
            for (int i = 2; i < zs.Length; i++)
            {
                // Perform the prediction
                dkf.Predict(F, G, Q);
                // Test against the prediction state/covariance
                Assert.IsTrue(dkf.State[0,0].AlmostEqual(posp[i-2], tol), "State Prediction (" + i + ")");
                Assert.IsTrue(dkf.State[1, 0].AlmostEqual(velp[i-2], tol), "Covariance Prediction (" + i + ")");
                // Perform the update
                Matrix<double> z = Matrix<double>.Build.Dense(1, 1, new[] { zs[i] });
                dkf.Update(z, H, R);
                // Test against the update state/covariance
                // Test against the prediction state/covariance
                Assert.IsTrue(dkf.State[0, 0].AlmostEqual(posu[i-2], tol), "State Prediction (" + i + ")");
                Assert.IsTrue(dkf.State[1, 0].AlmostEqual(velu[i-2], tol), "Covariance Prediction (" + i + ")");
            }
        }
Ejemplo n.º 2
0
        public void UpDateVelocity(float[] acceleration)
        {
            float interval = sw.ElapsedMilliseconds / 100.00f;

            KFilter.Update(getZ(acceleration), getH(interval), getR(acceleration));
            KFilter.Predict(getStateUpdateMat(interval, acceleration), getStateCov());

            state = KFilter.State;
            updateState();

            if (interval > 0)
            {
                //Use the Pythagoras for the velocity. V = Root(A*A + B*B + C*C)
                velocity = (float)Math.Sqrt((velocityXYZ[0] * velocityXYZ[0] + velocityXYZ[1] * velocityXYZ[1] + velocityXYZ[2] * velocityXYZ[2]));

                string text = "State = ";
                for (int i = 0; i < 9; i++)
                {
                    text += string.Format("{0:f}, ", state[i, 0]);
                }
                VelText.Text = text;
                // VelText.Text = string.Format("STATE = {0:f}m/s", velocity);
                xVel.Text = string.Format("x - Velocity = {0:f}m/s", velocityXYZ[0]);
                yVel.Text = string.Format("y - Velocity = {0:f}m/s", velocityXYZ[1]);
                zVel.Text = string.Format("z - Velocity = {0:f}m/s", velocityXYZ[2]);

                UpdatePosition();
                sw.Restart();
            }
        }
Ejemplo n.º 3
0
        public void TestDiscreteKalmanFilter()
        {
            // Test constants
            double r   = 30.0;            // Measurement covariance
            double T   = 20.0;            // Time interval between measurements
            double q   = 0.1;             // Plant noise constant
            double tol = 0.0001;          // Accuracy tolerance

            // Reference values to test against (generated from a known filter)
            // Reference Measurements
            double[] zs = { 290.16851039, 654.55633793, 968.97141280, 1325.09197161, 1636.35947675, 1974.39053148, 2260.80770553, 2574.36119750, 2901.32285462, 3259.14709098 };
            // Expected position estimates (predictions)
            double[] posp = { 1018.94416547, 1237.00029618, 1754.97092716, 1855.62596430, 2400.27521403, 2446.47067625, 2978.94381631, 3173.63724675 };
            // Expected velocity estimates (predictions)
            double[] velp = { 18.21939138, 13.38351136, 21.52280841, 10.92729947, 21.32868461, 9.24370334, 20.26482836, 13.59419761 };
            // Expected position estimates (after measurement update)
            double[] posu = { 969.33006892, 1324.51475894, 1637.07997492, 1973.70152187, 2261.59660945, 2573.64724909, 2901.75329465, 3258.67447647 };
            // Expected velocity estimates (after measurement update)
            double[] velu = { 13.38351136, 21.52280841, 10.92729947, 21.32868461, 9.24370334, 20.26482836, 13.59419761, 20.93270702 };

            // Initial estimate based on two point differencing
            double z0 = zs[0];
            double z1 = zs[1];
            Matrix x0 = new Matrix(2, 1);

            x0[0, 0] = z1;
            x0[1, 0] = (z1 - z0) / T;
            Matrix P0 = new Matrix(2, 2);

            P0[0, 0] = r; P0[1, 0] = r / T; P0[0, 1] = r / T; P0[1, 1] = 2 * r / (T * T);
            // Setup a DiscreteKalmanFilter to filter
            DiscreteKalmanFilter dkf = new DiscreteKalmanFilter(x0, P0);

            double[] aF = { 1d, 0d, T, 1 };
            double[] aG = { (T * T) / 2d, T };
            Matrix   F  = new Matrix(aF, 2);                            // State transition matrix
            Matrix   G  = new Matrix(aG, 2);                            // Plant noise matrix
            Matrix   Q  = new Matrix(1, 1); Q[0, 0] = q;                // Plant noise variance
            Matrix   R  = new Matrix(1, 1); R[0, 0] = r;                // Measurement variance matrix
            Matrix   H  = new Matrix(1, 2); H[0, 0] = 1d; H[0, 1] = 0d; // Measurement matrix

            // Test the performance of this filter against the stored data from a proven
            // Kalman Filter of a one dimenional tracker.
            for (int i = 2; i < zs.Length; i++)
            {
                // Perform the prediction
                dkf.Predict(F, G, Q);
                // Test against the prediction state/covariance
                Assert.IsTrue(Number.AlmostEqual(dkf.State[0, 0], posp[i - 2], tol), "State Prediction (" + i + ")");
                Assert.IsTrue(Number.AlmostEqual(dkf.State[1, 0], velp[i - 2], tol), "Covariance Prediction (" + i + ")");
                // Perform the update
                Matrix z = new Matrix(1, 1, zs[i]);
                dkf.Update(z, H, R);
                // Test against the update state/covariance
                // Test against the prediction state/covariance
                Assert.IsTrue(Number.AlmostEqual(dkf.State[0, 0], posu[i - 2], tol), "State Prediction (" + i + ")");
                Assert.IsTrue(Number.AlmostEqual(dkf.State[1, 0], velu[i - 2], tol), "Covariance Prediction (" + i + ")");
            }
        }
Ejemplo n.º 4
0
        /// <summary>
        /// This step is to update the Kalman filter postior to the location measurement
        /// </summary>
        private void UpdateKalmanEstimate()
        {
            _location.R = _location.Cov.Multiply(0.3); // 0.3 is an abitrary magic number
            _location.UpdateMeasurement();

            dkf.Update(_location.Measured, _location.H, _location.R);

            _location.Current = dkf.State;
            _location.Cov     = dkf.Cov;
        }
Ejemplo n.º 5
0
        static void Main(string[] args)
        {
            double[] IndividualValues = { 0, 0, 0, 0, 0, 0 };
            String[] SubStrings;
            float[]  q = { 0, 0, 0, 0 };
            double   x = 0, xq, y = 0, z = 0, t2 = 0, x1, y1, z1, time, velx, vely, velz, accx, accy, accz, temp;
            bool     correctRead;
            int      comaCount = 0;

            char[]     test;
            SerialPort port           = new SerialPort("COM3", 19200);
            String     CurrentReading = "ABCD";
            Matrix     initial        = Matrix.Build.DenseOfArray(new double[, ] {
                { 0 },
                { 0 },
                { 0 },
                { 0 },
                { 0 },
                { 0 },
                { 0 },
                { 0 },
                { 0 }
            });
            Matrix covariance = Matrix.Build.DenseOfArray(new double[, ] {
                { 0.1, 0, 0, 0, 0, 0, 0, 0, 0 },
                { 0, 0.1, 0, 0, 0, 0, 0, 0, 0 },
                { 0, 0, 0.1, 0, 0, 0, 0, 0, 0 },
                { 0, 0, 0, 0.1, 0, 0, 0, 0, 0 },
                { 0, 0, 0, 0, 0.1, 0, 0, 0, 0 },
                { 0, 0, 0, 0, 0, 0.1, 0, 0, 0 },
                { 0, 0, 0, 0, 0, 0, 0.1, 0, 0 },
                { 0, 0, 0, 0, 0, 0, 0, 0.1, 0 },
                { 0, 0, 0, 0, 0, 0, 0, 0, 0.1 }
            });
            DiscreteKalmanFilter kalman = new DiscreteKalmanFilter(initial, covariance);

            port.ReadTimeout = 2000;
            port.Close();
            if (!port.IsOpen)
            {
                port.Open();
            }

            while (t2 <= 20000000000)
            {
                CurrentReading = port.ReadLine();
                test           = CurrentReading.ToCharArray();
                correctRead    = true;
                comaCount      = 0;
                for (int i = test.Length - 1; i >= 0; i--)
                {
                    if (Char.IsNumber(test[i]) == false & test[i] != ',' & test[i] != '.' & Char.IsWhiteSpace(test[i]) == false & test[i] != '-')
                    {
                        correctRead = false;
                    }
                    if (test[i] == ',')
                    {
                        comaCount = comaCount + 1;
                    }
                }
                if (correctRead == true & comaCount == 9)
                {
                    SubStrings = CurrentReading.Split(',');
                    q[0]       = Convert.ToSingle(SubStrings[0]);
                    q[1]       = Convert.ToSingle(SubStrings[1]);
                    q[2]       = Convert.ToSingle(SubStrings[2]);
                    q[3]       = Convert.ToSingle(SubStrings[3]);
                    Quaternion quaternion = new Quaternion(q[0], q[1], q[2], q[3]);
                    x1   = Convert.ToDouble(SubStrings[4]);
                    y1   = Convert.ToDouble(SubStrings[5]);
                    z1   = Convert.ToDouble(SubStrings[6]);
                    temp = Convert.ToDouble(SubStrings[7]);
                    time = Convert.ToSingle(SubStrings[8]);
                    velx = (x1 - x) / (time - t2);
                    vely = (y1 - y) / (time - t2);
                    velz = (z1 - z) / (time - t2);
                    accx = velx / (time - t2);
                    accy = vely / (time - t2);
                    accz = velz / (time - t2);
                    //Dummy Data : Generate a very noisy position estimate
                    Matrix Meassurement = Matrix.Build.DenseOfArray(new double[, ] {
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 },
                        { 0.1 }
                    });
                    Matrix Noise = Matrix.Build.DenseOfArray(new double[, ] {
                        { 50.94324709, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 345.3342043, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 184.5258328, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0.000105439, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0.000107133, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0.000586316, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 5.7569E-06, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 1.20007E-05, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 3.71021E-052 }
                    });
                    //veryfie
                    Matrix startetrans = Matrix.Build.DenseOfArray(new double[, ] {
                        { x1, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, y1, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, z1, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, velx, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, vely, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, velz, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, accx, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, accy, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, accz }
                    });

                    kalman.Predict(startetrans, kalman.Cov);
                    kalman.Update(Meassurement, Noise, covariance);

                    x1 += kalman.State.At(0, 0);
                    y1 += kalman.State.At(1, 0);
                    z1 += kalman.State.At(2, 0);
                    Console.WriteLine("x: " + quaternion.ToEulerAngles().Alpha.Degrees + ", y: " + quaternion.ToEulerAngles().Beta.Degrees + ", z: " + z1 + ", temperature: " + temp + ", time: " + t2);
                    t2 = time;
                    x  = x1;
                    y  = y1;
                    z  = z1;
                }
            }
        }
Ejemplo n.º 6
0
        public static Tuple <Matrix <double>, Matrix <double> > UpdateState(this DiscreteKalmanFilter dFilterSharp, Matrix <double> z, Matrix <double> H, Matrix <double> R)
        {
            dFilterSharp.Update(z, H, R);

            return(Tuple.Create(dFilterSharp.State, dFilterSharp.Cov));
        }