Ejemplo n.º 1
0
        internal static void TestDigO()
        {
            BBBPinManager.AddMappingGPIO(BBBPin.P8_08, true, Scarlet.IO.ResistorState.PULL_DOWN);
            BBBPinManager.ApplyPinSettings(RoverMain.ApplyDevTree);
            IDigitalOut Output = new DigitalOutBBB(BBBPin.P8_08);
            bool        Value  = false;

            for (int i = 0; i < 50; i++)
            {
                Output.SetOutput(Value);
                Value = !Value;
                Thread.Sleep(100);
            }
            Output.SetOutput(false);
        }
Ejemplo n.º 2
0
        public ArmMotorController()
        {
            Scarlet.Utilities.StateStore.Start("ARM");

            BBBPinManager.AddMappingPWM(ShoulderPin);
            BBBPinManager.AddMappingPWM(ElbowPin);
            BBBPinManager.AddMappingPWM(WristPin1);
            BBBPinManager.AddMappingPWM(WristPin2);
            BBBPinManager.AddMappingGPIO(WristDirectionPin1, true, ResistorState.PULL_UP);
            BBBPinManager.AddMappingGPIO(WristDirectionPin2, true, ResistorState.PULL_UP);

            BBBPinManager.AddMappingADC(ShoulderPotPin);
            BBBPinManager.AddMappingADC(ElbowPotPin);
            BBBPinManager.AddMappingADC(WristPotPin);
            BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_IF_NONE);
            BeagleBone.Initialize(SystemMode.DEFAULT, true);

            const double DegToRad = Math.PI / 180.0;

            a = new Arm((0, 0, Math.PI / 2, Math.PI / 2, 0, 0, 6.8),
                        (0, 0, -76 * DegToRad, 100 * DegToRad, 0, 0, 28.0),
                        (0, 0, -168.51 * DegToRad, -10 * DegToRad, 0, 0, 28.0),
                        (-2 * Math.PI, 2 * Math.PI, -Math.PI / 2, Math.PI / 2, 0, 0, 12.75));
            //(0, 12.75, -Math.PI / 2, Math.PI / 2));

            LowPass <float> ShoulderFilter = new LowPass <float>();
            LowPass <float> ElbowFilter    = new LowPass <float>();

            ShoulderPWM = PWMBBB.PWMDevice1.OutputB;
            ElbowPWM    = PWMBBB.PWMDevice1.OutputA;
            IPWMOutput WristPWM1 = PWMBBB.PWMDevice2.OutputB;
            IPWMOutput WristPWM2 = PWMBBB.PWMDevice2.OutputA;

            IDigitalOut WristDirectionGPIO1 = new DigitalOutBBB(WristDirectionPin1);
            IDigitalOut WristDirectionGPIO2 = new DigitalOutBBB(WristDirectionPin2);
            IAnalogueIn ShoulderADC         = new AnalogueInBBB(ShoulderPotPin);
            IAnalogueIn ElbowADC            = new AnalogueInBBB(ElbowPotPin);
            IAnalogueIn WristADC            = new AnalogueInBBB(WristPotPin);

            Shoulder = new TalonMC(ShoulderPWM, 0.2f, ShoulderFilter);
            Elbow    = new TalonMC(ElbowPWM, 0.2f, ElbowFilter);
            Wrist1   = new CytronMD30C(WristPWM1, WristDirectionGPIO1, 0.3f);
            Wrist2   = new CytronMD30C(WristPWM2, WristDirectionGPIO2, 0.3f);

            ShoulderPot = new Potentiometer(ShoulderADC, 300);
            ElbowPot    = new Potentiometer(ElbowADC, 300);
            WristPot    = new Potentiometer(WristADC, 300);
        }
Ejemplo n.º 3
0
        internal static void TestSPI()
        {
            BBBPinManager.AddMappingsSPI(BBBPin.P9_21, BBBPin.NONE, BBBPin.P9_22);
            BBBPinManager.AddMappingSPI_CS(BBBPin.P9_12);
            BBBPinManager.ApplyPinSettings(RoverMain.ApplyDevTree);
            IDigitalOut CS_Thermo = new DigitalOutBBB(BBBPin.P9_12);
            MAX31855    Thermo    = new MAX31855(SPIBBB.SPIBus0, CS_Thermo);

            Log.SetSingleOutputLevel(Log.Source.SENSORS, Log.Severity.DEBUG);
            for (int i = 0; i < 100; i++)
            {
                Thermo.UpdateState();
                Log.Output(Log.Severity.DEBUG, Log.Source.SENSORS, "Thermocouple Data, Faults: " + string.Format("{0:G}", Thermo.GetFaults()) + ", Internal: " + Thermo.GetInternalTemp() + ", External: " + Thermo.GetExternalTemp() + " (Raw: " + Thermo.GetRawData() + ")");
                Thread.Sleep(500);
            }
        }
Ejemplo n.º 4
0
        static void Main(string[] args)
        {
            // Begin setup of Beaglebone pins
            StateStore.Start("SmartFlatbot");
            BeagleBone.Initialize(SystemMode.DEFAULT, true);

            // Add Beaglebone mapings with Scarlet
            BBBPinManager.AddMappingPWM(BBBPin.P9_14);
            BBBPinManager.AddMappingPWM(BBBPin.P9_16);
            BBBPinManager.AddMappingGPIO(BBBPin.P9_15, true, ResistorState.NONE, true);
            BBBPinManager.AddMappingGPIO(BBBPin.P9_27, true, ResistorState.NONE, true);

            // Apply mappings to Beaglebone
            BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_IF_NONE);

            IDigitalOut Motor1Output = new DigitalOutBBB(BBBPin.P9_15);
            IDigitalOut Motor2Output = new DigitalOutBBB(BBBPin.P9_27);

            IPWMOutput OutA = PWMBBB.PWMDevice1.OutputA;
            IPWMOutput OutB = PWMBBB.PWMDevice1.OutputB;

            Motor1Output.SetOutput(false);
            Motor2Output.SetOutput(false);

            PWMBBB.PWMDevice1.SetFrequency(10000);;
            OutA.SetEnabled(true);
            OutB.SetEnabled(true);

            // Setup Motor Controls
            CytronMD30C[] Motor = new CytronMD30C[2];
            Motor[0] = new CytronMD30C(OutA, Motor1Output, (float).5);
            Motor[1] = new CytronMD30C(OutB, Motor2Output, (float).5);

            Motor[0].SetSpeed(0);
            Motor[1].SetSpeed(0);
        }
Ejemplo n.º 5
0
        public static void Main(string[] args)
        {
            Boolean turnMode = false;
            Boolean lineMode = false;

            double SetTurn = 0;
            double PTurn   = 0;
            double ITurn   = 0;
            double DTurn   = 0;

            double SetDis = 0;
            double PDis   = 0;
            double IDis   = 0;
            double DDis   = 0;

            // Begin setup of Beaglebone pins
            StateStore.Start("SmartFlatbot");
            BeagleBone.Initialize(SystemMode.DEFAULT, true);

            // Add Beaglebone mapings with Scarlet
            BBBPinManager.AddMappingPWM(BBBPin.P9_14);
            BBBPinManager.AddMappingPWM(BBBPin.P9_16);
            BBBPinManager.AddMappingGPIO(BBBPin.P9_15, true, ResistorState.NONE, true);
            BBBPinManager.AddMappingGPIO(BBBPin.P9_27, true, ResistorState.NONE, true);

            // Apply mappings to Beaglebone
            BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_IF_NONE);

            IDigitalOut Motor1Output = new DigitalOutBBB(BBBPin.P9_15);
            IDigitalOut Motor2Output = new DigitalOutBBB(BBBPin.P9_27);

            IPWMOutput OutA = PWMBBB.PWMDevice1.OutputA;
            IPWMOutput OutB = PWMBBB.PWMDevice1.OutputB;

            Motor1Output.SetOutput(false);
            Motor2Output.SetOutput(false);

            PWMBBB.PWMDevice1.SetFrequency(10000);;
            OutA.SetEnabled(true);
            OutB.SetEnabled(true);

            // Setup Motor Controls
            CytronMD30C[] Motor = new CytronMD30C[2];
            Motor[0] = new CytronMD30C(OutA, Motor1Output, (float).5);
            Motor[1] = new CytronMD30C(OutB, Motor2Output, (float).5);

            // Make rover (hopefully) stay still in begining.
            Motor[0].SetSpeed(0);
            Motor[1].SetSpeed(0);

            // Set the rover in turn only mode for testing
            if (args.Length > 0)
            {
                if (args[0].Equals("turn"))
                {
                    turnMode = true;
                }
                else if (args[0].Equals("line"))
                {
                    lineMode = true;
                }
            }


            /* Get the PID values from file PIDValues.txt
             * All values will be in double format
             * Data must be in this format below:
             * ------------------------------------------
             * Line 1 Ignored
             * Line 2 Ignored
             * Line 3 Direction target value
             * Line 4 Direction P value
             * Line 5 Direction I value
             * Line 6 Direction D value
             * Line 7 Ignored
             * Line 8 Distance target value
             * Line 9 Distance P value
             * Line 10 Distance I value
             * Line 11 Distance D value
             * All lines after are ignored
             * -----------------------------------------
             */
            try
            {   // Open the text file using a stream reader.
                using (StreamReader sr = new StreamReader("PIDValues.txt"))
                {
                    // Read the stream to a string, and write the string to the console.
                    sr.ReadLine();
                    sr.ReadLine(); // Ignore first two lines
                    SetTurn = Convert.ToDouble(sr.ReadLine());
                    PTurn   = Convert.ToDouble(sr.ReadLine());
                    ITurn   = Convert.ToDouble(sr.ReadLine());
                    DTurn   = Convert.ToDouble(sr.ReadLine());
                    sr.ReadLine();
                    SetDis = Convert.ToDouble(sr.ReadLine());
                    PDis   = Convert.ToDouble(sr.ReadLine());
                    IDis   = Convert.ToDouble(sr.ReadLine());
                    DDis   = Convert.ToDouble(sr.ReadLine());
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("PIDValues.txt is either missing or in improper format:");
                Console.WriteLine(e.Message);
            }

            Console.WriteLine("Direction Target, P, I, D: " + SetTurn + " " + PTurn + " " + ITurn + " " + DTurn);
            Console.WriteLine("Distance Target, P, I, D: " + SetDis + " " + PDis + " " + IDis + " " + DDis);

            // Set the PIDs
            PID directionPID = new PID(PTurn, ITurn, DTurn);

            directionPID.SetTarget(SetTurn);

            PID distancePID = new PID(PDis, IDis, DDis);

            directionPID.SetTarget(SetDis);


            // Start UDP communication
            // Listen for any IP with port 9000
            UdpClient  udpServer = new UdpClient(9000);
            IPEndPoint remoteEP  = new IPEndPoint(IPAddress.Any, 9000);

            // Main Loop. Keep running until program is stopped
            do
            {
                // Get data from UDP. Convert it to a String
                // Note this is a blocking call.
                var    data       = udpServer.Receive(ref remoteEP);
                String dataString = Encoding.ASCII.GetString(data);

                Console.WriteLine(dataString);

                // Set the wheel values to be zero for now
                Double leftWheel  = 0;
                Double rightWheel = 0;

                // Make sure the data received is not an empty string
                if (!String.IsNullOrEmpty(dataString))
                {
                    // Split the String into distance and direction
                    // Is in format "Distance,Direction"
                    // Distance is from 1 to 150 ish
                    // Direction is from -10 to 10 degrees
                    String[] speedDis  = dataString.Split(',');
                    Double   distance  = Convert.ToDouble(speedDis[0]);
                    Double   direction = (Convert.ToDouble(speedDis[1]));

                    // If mode is set to not turn only the run
                    if (!turnMode)
                    {
                        distancePID.Feed(distance);
                        if (!Double.IsNaN(distancePID.Output))
                        {
                            rightWheel += distancePID.Output;
                            leftWheel  += distancePID.Output;
                        }
                    }

                    if (!lineMode)
                    {
                        directionPID.Feed(direction);
                        if (!Double.IsNaN(directionPID.Output))
                        {
                            rightWheel += directionPID.Output;
                            leftWheel  -= directionPID.Output;
                        }
                    }
                }
                // If data received is not a full string, stop motors.
                else
                {
                    leftWheel  = 0;
                    rightWheel = 0;
                }


                // Set the speed for the motor controllers
                // Max speed is one
                Motor[0].SetSpeed((float)(rightWheel));
                Motor[1].SetSpeed((float)(leftWheel));
            } while (true);
        }
Ejemplo n.º 6
0
        public static void Start(string[] args)
        {
            if (args.Length < 3)
            {
                TestMain.ErrorExit("io bbb command requires functionality to test.");
            }
            BeagleBone.Initialize(SystemMode.DEFAULT, true);

            switch (args[2].ToLower())
            {
            case "digin":
            {
                if (args.Length < 4)
                {
                    TestMain.ErrorExit("io bbb digin command requires pin to test.");
                }
                BBBPin InputPin = StringToPin(args[3]);
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Testing digital input on BBB pin " + InputPin.ToString());
                BBBPinManager.AddMappingGPIO(InputPin, false, ResistorState.PULL_DOWN);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IDigitalIn Input = new DigitalInBBB(InputPin);
                while (true)
                {
                    Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Current pin state: " + (Input.GetInput() ? "HIGH" : "LOW"));
                    Thread.Sleep(250);
                }
            }

            case "digout":
            {
                if (args.Length < 4)
                {
                    TestMain.ErrorExit("io bbb digout command requires pin to test.");
                }
                BBBPin OutputPin = StringToPin(args[3]);
                if (args.Length < 5)
                {
                    TestMain.ErrorExit("io bbb digout command requires output mode (high/low/blink).");
                }
                if (args[4] != "high" && args[4] != "low" && args[4] != "blink")
                {
                    TestMain.ErrorExit("Invalid digout test mode supplied.");
                }
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Testing digital output on BBB pin " + OutputPin.ToString());
                BBBPinManager.AddMappingGPIO(OutputPin, true, ResistorState.PULL_DOWN);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IDigitalOut Output = new DigitalOutBBB(OutputPin);
                if (args[4] == "high")
                {
                    Output.SetOutput(true);
                }
                else if (args[4] == "low")
                {
                    Output.SetOutput(false);
                }
                else
                {
                    bool Out = false;
                    while (true)
                    {
                        Output.SetOutput(Out);
                        Out = !Out;
                        Thread.Sleep(250);
                    }
                }
                break;
            }

            case "pwm":
            {
                if (args.Length < 4)
                {
                    TestMain.ErrorExit("io bbb pwm command requires pin to test.");
                }
                BBBPin OutputPin = StringToPin(args[3]);
                if (args.Length < 5)
                {
                    TestMain.ErrorExit("io bbb pwm command requires frequency.");
                }
                int Frequency = int.Parse(args[4]);
                if (args.Length < 6)
                {
                    TestMain.ErrorExit("io bbb pwm command requires output mode.");
                }
                if (args[5] != "per" && args[5] != "sine")
                {
                    TestMain.ErrorExit("io bbb pwm command invalid (per/sine).");
                }
                if (args[5] == "per" && args.Length < 7)
                {
                    TestMain.ErrorExit("io bbb pwm per must be provided duty cycle.");
                }
                BBBPinManager.AddMappingPWM(OutputPin);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IPWMOutput Output = PWMBBB.GetFromPin(OutputPin);
                Output.SetFrequency(Frequency);
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Testing PWM output on BBB pin " + OutputPin.ToString() + " at " + Frequency + "Hz.");
                if (args[5] == "per")
                {
                    Output.SetOutput(int.Parse(args[6]) / 100F);
                    Output.SetEnabled(true);
                    Thread.Sleep(15000);     // Not sure if it stops outputting when the program exits.
                }
                else
                {
                    int Cycle = 0;
                    while (true)
                    {
                        float Val = (float)((Math.Sin(Cycle * Math.PI / 180.000D) + 1) / 2);
                        Output.SetOutput(Val);
                        Thread.Sleep(50);
                        Cycle += 20;
                    }
                }
                break;
            }

            case "adc":
            {
                if (args.Length < 4)
                {
                    TestMain.ErrorExit("io bbb adc command requires pin to test.");
                }
                BBBPin InputPin = StringToPin(args[3]);
                BBBPinManager.AddMappingADC(InputPin);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IAnalogueIn Input = new AnalogueInBBB(InputPin);
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Testing analogue input on BBB pin " + InputPin.ToString());
                while (true)
                {
                    Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "ADC Input: " + Input.GetInput() + " (Raw: " + Input.GetRawInput() + ")");
                    Thread.Sleep(250);
                }
            }

            case "int":
            {
                if (args.Length < 4)
                {
                    TestMain.ErrorExit("io bbb int command requires pin to test.");
                }
                BBBPin InputPin = StringToPin(args[3]);
                if (args.Length < 5)
                {
                    TestMain.ErrorExit("io bbb int command requires interrupt mode (rise/fall/both).");
                }
                if (args[4] != "rise" && args[4] != "fall" && args[4] != "both")
                {
                    TestMain.ErrorExit("Invalid interrupt mode supplied.");
                }

                BBBPinManager.AddMappingGPIO(InputPin, true, ResistorState.PULL_DOWN);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IDigitalIn Input = new DigitalInBBB(InputPin);
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Testing interrupts on BBB pin " + InputPin.ToString());
                switch (args[4])
                {
                case "rise": ((IInterruptSource)Input).RegisterInterruptHandler(GetInterrupt, InterruptType.RISING_EDGE); break;

                case "fall": ((IInterruptSource)Input).RegisterInterruptHandler(GetInterrupt, InterruptType.FALLING_EDGE); break;

                case "both": ((IInterruptSource)Input).RegisterInterruptHandler(GetInterrupt, InterruptType.ANY_EDGE); break;
                }
                while (true)
                {
                    Thread.Sleep(50);
                }                                     // Program needs to be running to receive.
            }

            case "mtk3339":
            {
                BBBPinManager.AddMappingUART(BBBPin.P9_24);
                BBBPinManager.AddMappingUART(BBBPin.P9_26);
                BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_REGARDLESS);
                IUARTBus UART = UARTBBB.UARTBus1;
                Log.Output(Log.Severity.INFO, Log.Source.HARDWAREIO, "Press any key to stop.");
                while (Console.KeyAvailable)
                {
                    Console.ReadKey();
                }
                byte[] Buffer = new byte[32];
                while (true)
                {
                    Thread.Sleep(10);
                    if (UART.BytesAvailable() > 0)
                    {
                        int Count = UART.Read(32, Buffer);
                        Console.Write(System.Text.Encoding.ASCII.GetString(UtilMain.SubArray(Buffer, 0, Count)));
                    }
                    if (Console.KeyAvailable)
                    {
                        break;
                    }
                }
                break;
            }
            }
        }
Ejemplo n.º 7
0
        public static void Start(string[] args)
        {
            if (args.Length < 2)
            {
                TestMain.ErrorExit("Device testing needs device to test.");
            }
            switch (args[1].ToLower())
            {
            case "hx711":
            {
                if (args.Length < 5)
                {
                    TestMain.ErrorExit("Insufficient info to run HX711 test. See help.");
                }
                IDigitalIn  DataPin  = null;
                IDigitalOut ClockPin = null;
                if (args[2].Equals("pi", StringComparison.InvariantCultureIgnoreCase))
                {
                    RaspberryPi.Initialize();
                    DataPin  = new DigitalInPi(int.Parse(args[3]));
                    ClockPin = new DigitalOutPi(int.Parse(args[4]));
                }
                else if (args[2].Equals("bbb", StringComparison.InvariantCultureIgnoreCase))
                {
                    BeagleBone.Initialize(SystemMode.DEFAULT, true);
                    BBBPin DataBBBPin  = IOBBB.StringToPin(args[3]);
                    BBBPin ClockBBBPin = IOBBB.StringToPin(args[4]);
                    BBBPinManager.AddMappingGPIO(DataBBBPin, false, ResistorState.NONE);
                    BBBPinManager.AddMappingGPIO(ClockBBBPin, true, ResistorState.NONE);
                    BBBPinManager.ApplyPinSettings(BBBPinManager.ApplicationMode.APPLY_IF_NONE);
                    DataPin  = new DigitalInBBB(DataBBBPin);
                    ClockPin = new DigitalOutBBB(ClockBBBPin);
                }
                else
                {
                    TestMain.ErrorExit("HX711 test: Unknown platform. See help.");
                }
                HX711 DUT = new HX711(ClockPin, DataPin);
                while (Console.KeyAvailable)
                {
                    Console.ReadKey();
                }
                Log.Output(Log.Severity.INFO, Log.Source.GUI, "[w] to increase gain, [s] to decrease. [z] to zero.");
                Log.Output(Log.Severity.INFO, Log.Source.GUI, "Press any other key to exit.");

                HX711.Gain Gain     = HX711.Gain.GAIN_128x;
                bool       Continue = true;
                while (Continue)
                {
                    if (Console.KeyAvailable)
                    {
                        char Key = Console.ReadKey().KeyChar;
                        switch (Key)
                        {
                        case 'w':
                        {
                            if (Gain == HX711.Gain.GAIN_32x)
                            {
                                Gain = HX711.Gain.GAIN_64x;
                            }
                            else if (Gain == HX711.Gain.GAIN_64x)
                            {
                                Gain = HX711.Gain.GAIN_128x;
                            }
                            else
                            {
                                Log.Output(Log.Severity.ERROR, Log.Source.SENSORS, "Gain at maximum already.");
                            }
                            DUT.SetGain(Gain);
                            Log.Output(Log.Severity.INFO, Log.Source.SENSORS, "Gain now at " + Gain);
                            break;
                        }

                        case 's':
                        {
                            if (Gain == HX711.Gain.GAIN_128x)
                            {
                                Gain = HX711.Gain.GAIN_64x;
                            }
                            else if (Gain == HX711.Gain.GAIN_64x)
                            {
                                Gain = HX711.Gain.GAIN_32x;
                            }
                            else
                            {
                                Log.Output(Log.Severity.ERROR, Log.Source.SENSORS, "Gain at minimum already.");
                            }
                            DUT.SetGain(Gain);
                            Log.Output(Log.Severity.INFO, Log.Source.SENSORS, "Gain now at " + Gain);
                            break;
                        }

                        case 'z':
                        {
                            DUT.Tare();
                            Log.Output(Log.Severity.INFO, Log.Source.SENSORS, "Tared.");
                            break;
                        }

                        default:
                        {
                            Continue = false;
                            break;
                        }
                        }
                    }
                    DUT.UpdateState();
                    Log.Output(Log.Severity.INFO, Log.Source.SENSORS, "HX711 readings: Raw: " + DUT.GetRawReading() + ", Adjusted: " + DUT.GetAdjustedReading());
                    Thread.Sleep(250);
                }
                break;
            }

            default:
            {
                TestMain.ErrorExit("Unknown device.");
                break;
            }
            }
        }