/// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <Complex> matrix, Vector <Complex> input, Vector <Complex> result, Iterator <Complex> iterator, IPreconditioner <Complex> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, nameof(matrix));
            }

            if ((input.Count != matrix.RowCount) || (result.Count != input.Count))
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(matrix, input, result);
            }

            if (iterator == null)
            {
                iterator = new Iterator <Complex>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <Complex>();
            }

            preconditioner.Initialize(matrix);

            // Choose an initial guess x_0
            // Take x_0 = 0
            var xtemp = new DenseVector(input.Count);

            // Choose k vectors q_1, q_2, ..., q_k
            // Build a new set if:
            // a) the stored set doesn't exist (i.e. == null)
            // b) Is of an incorrect length (i.e. too long)
            // c) The vectors are of an incorrect length (i.e. too long or too short)
            var useOld = false;

            if (_startingVectors != null)
            {
                // We don't accept collections with zero starting vectors so ...
                if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
                {
                    // Only check the first vector for sizing. If that matches we assume the
                    // other vectors match too. If they don't the process will crash
                    if (_startingVectors[0].Count == input.Count)
                    {
                        useOld = true;
                    }
                }
            }

            _startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);

            // Store the number of starting vectors. Not really necessary but easier to type :)
            var k = _startingVectors.Count;

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary values
            var c = new Complex[k];

            // Define the temporary vectors
            var gtemp = new DenseVector(residuals.Count);

            var u     = new DenseVector(residuals.Count);
            var utemp = new DenseVector(residuals.Count);
            var temp  = new DenseVector(residuals.Count);
            var temp1 = new DenseVector(residuals.Count);
            var temp2 = new DenseVector(residuals.Count);

            var zd = new DenseVector(residuals.Count);
            var zg = new DenseVector(residuals.Count);
            var zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);

            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) == IterationStatus.Continue)
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].ConjugateDotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqualNumbersBetween(0, 1) && c[k - 1].Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    throw new NumericalBreakdownException();
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].ConjugateDotProduct(residuals) / c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.ConjugateDotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqualNumbersBetween(0, 1) && rho.Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    rho = 1.0;
                }

                rho = -u.ConjugateDotProduct(temp) / rho;

                // r_(jk+1) = rho_(j+1) A u~_(jk+1) + u_(jk+1)
                u.CopyTo(residuals);

                // Reuse temp
                temp.Multiply(rho, temp);
                residuals.Add(temp, temp2);
                temp2.CopyTo(residuals);

                // x_(jk+1) = x_((j-1)k_k) - rho_(j+1) u~_(jk+1) + alpha_(jk+1) g~_((j-1)k+k)
                utemp.Multiply(-rho, temp);
                xtemp.Add(temp, temp2);
                temp2.CopyTo(xtemp);

                gtemp.Multiply(alpha, gtemp);
                xtemp.Add(gtemp, temp2);
                temp2.CopyTo(xtemp);

                // Check convergence and stop if we are converged.
                if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                {
                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, xtemp, input);

                    // Now recheck the convergence
                    if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                    {
                        // We're all good now.
                        // Exit from the while loop.
                        break;
                    }
                }

                // FOR (i = 1,2, ...., k)
                for (var i = 0; i < k; i++)
                {
                    // z_d = u_(jk+1)
                    u.CopyTo(zd);

                    // z_g = r_(jk+i)
                    residuals.CopyTo(zg);

                    // z_w = 0
                    zw.Clear();

                    // FOR (s = i, ...., k-1) AND j >= 1
                    Complex beta;
                    if (iterationNumber >= 1)
                    {
                        for (var s = i; s < (k - 1); s++)
                        {
                            // beta^(jk+i)_((j-1)k+s) = -q^t_(s+1) z_d / c_((j-1)k+s)
                            beta = -_startingVectors[s + 1].ConjugateDotProduct(zd) / c[s];

                            // z_d = z_d + beta^(jk+i)_((j-1)k+s) d_((j-1)k+s)
                            d[s].Multiply(beta, temp);
                            zd.Add(temp, temp2);
                            temp2.CopyTo(zd);

                            // z_g = z_g + beta^(jk+i)_((j-1)k+s) g_((j-1)k+s)
                            g[s].Multiply(beta, temp);
                            zg.Add(temp, temp2);
                            temp2.CopyTo(zg);

                            // z_w = z_w + beta^(jk+i)_((j-1)k+s) w_((j-1)k+s)
                            w[s].Multiply(beta, temp);
                            zw.Add(temp, temp2);
                            temp2.CopyTo(zw);
                        }
                    }

                    beta = rho * c[k - 1];
                    if (beta.Real.AlmostEqualNumbersBetween(0, 1) && beta.Imaginary.AlmostEqualNumbersBetween(0, 1))
                    {
                        throw new NumericalBreakdownException();
                    }

                    // beta^(jk+i)_((j-1)k+k) = -(q^T_1 (r_(jk+1) + rho_(j+1) z_w)) / (rho_(j+1) c_((j-1)k+k))
                    zw.Multiply(rho, temp2);
                    residuals.Add(temp2, temp);
                    beta = -_startingVectors[0].ConjugateDotProduct(temp) / beta;

                    // z_g = z_g + beta^(jk+i)_((j-1)k+k) g_((j-1)k+k)
                    g[k - 1].Multiply(beta, temp);
                    zg.Add(temp, temp2);
                    temp2.CopyTo(zg);

                    // z_w = rho_(j+1) (z_w + beta^(jk+i)_((j-1)k+k) w_((j-1)k+k))
                    w[k - 1].Multiply(beta, temp);
                    zw.Add(temp, temp2);
                    temp2.CopyTo(zw);
                    zw.Multiply(rho, zw);

                    // z_d = r_(jk+i) + z_w
                    residuals.Add(zw, zd);

                    // FOR (s = 1, ... i - 1)
                    for (var s = 0; s < (i - 1); s++)
                    {
                        // beta^(jk+i)_(jk+s) = -q^T_s+1 z_d / c_(jk+s)
                        beta = -_startingVectors[s + 1].ConjugateDotProduct(zd) / c[s];

                        // z_d = z_d + beta^(jk+i)_(jk+s) * d_(jk+s)
                        d[s].Multiply(beta, temp);
                        zd.Add(temp, temp2);
                        temp2.CopyTo(zd);

                        // z_g = z_g + beta^(jk+i)_(jk+s) * g_(jk+s)
                        g[s].Multiply(beta, temp);
                        zg.Add(temp, temp2);
                        temp2.CopyTo(zg);
                    }

                    // d_(jk+i) = z_d - u_(jk+i)
                    zd.Subtract(u, d[i]);

                    // g_(jk+i) = z_g + z_w
                    zg.Add(zw, g[i]);

                    // IF (i < k - 1)
                    if (i < (k - 1))
                    {
                        // c_(jk+1) = q^T_i+1 d_(jk+i)
                        c[i] = _startingVectors[i + 1].ConjugateDotProduct(d[i]);
                        if (c[i].Real.AlmostEqualNumbersBetween(0, 1) && c[i].Imaginary.AlmostEqualNumbersBetween(0, 1))
                        {
                            throw new NumericalBreakdownException();
                        }

                        // alpha_(jk+i+1) = q^T_(i+1) u_(jk+i) / c_(jk+i)
                        alpha = _startingVectors[i + 1].ConjugateDotProduct(u) / c[i];

                        // u_(jk+i+1) = u_(jk+i) - alpha_(jk+i+1) d_(jk+i)
                        d[i].Multiply(-alpha, temp);
                        u.Add(temp, temp2);
                        temp2.CopyTo(u);

                        // SOLVE M g~_(jk+i) = g_(jk+i)
                        preconditioner.Approximate(g[i], gtemp);

                        // x_(jk+i+1) = x_(jk+i) + rho_(j+1) alpha_(jk+i+1) g~_(jk+i)
                        gtemp.Multiply(rho * alpha, temp);
                        xtemp.Add(temp, temp2);
                        temp2.CopyTo(xtemp);

                        // w_(jk+i) = A g~_(jk+i)
                        matrix.Multiply(gtemp, w[i]);

                        // r_(jk+i+1) = r_(jk+i) - rho_(j+1) alpha_(jk+i+1) w_(jk+i)
                        w[i].Multiply(-rho * alpha, temp);
                        residuals.Add(temp, temp2);
                        temp2.CopyTo(residuals);

                        // We can check the residuals here if they're close
                        if (iterator.DetermineStatus(iterationNumber, xtemp, input, residuals) != IterationStatus.Continue)
                        {
                            // Recalculate the residuals and go round again. This is done to ensure that
                            // we have the proper residuals.
                            CalculateTrueResidual(matrix, residuals, xtemp, input);
                        }
                    }
                } // END ITERATION OVER i

                iterationNumber++;
            }

            // copy the temporary result to the real result vector
            xtemp.CopyTo(result);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (input.Count != matrix.RowCount || result.Count != input.Count)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(matrix, input, result);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            Complex beta = 0;

            // Define the temporary vectors
            // rDash_0 = r_0
            Vector rdash = DenseVector.OfVector(residuals);

            // t_-1 = 0
            Vector t  = new DenseVector(residuals.Count);
            Vector t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            Vector w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            Vector c = new DenseVector(residuals.Count);
            Vector p = new DenseVector(residuals.Count);
            Vector s = new DenseVector(residuals.Count);
            Vector u = new DenseVector(residuals.Count);
            Vector y = new DenseVector(residuals.Count);
            Vector z = new DenseVector(residuals.Count);

            Vector temp  = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);
            Vector temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                _preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.ConjugateDotProduct(residuals) / rdash.ConjugateDotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                _preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.ConjugateDotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.Real.AlmostEqual(0, 1) && cdot.Imaginary.AlmostEqual(0, 1))
                {
                    cdot = 1.0;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var     ctdot = c.ConjugateDotProduct(t);
                Complex eta;
                Complex sigma;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot / cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.ConjugateDotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.Real.AlmostEqual(0, 1) && ydot.Imaginary.AlmostEqual(0, 1))
                    {
                        ydot = 1.0;
                    }

                    var ytdot = y.ConjugateDotProduct(t);
                    var cydot = c.ConjugateDotProduct(y);

                    var denom = (cdot * ydot) - (cydot * cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot * ctdot) - (ytdot * cydot)) / denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot * ytdot) - (cydot * ctdot)) / denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.Real.AlmostEqual(0, 1) || !sigma.Imaginary.AlmostEqual(0, 1)) ? alpha / sigma * rdash.ConjugateDotProduct(residuals) / rdash.ConjugateDotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                _preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
        /// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
        /// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
        public void Solve(Matrix <Numerics.Complex32> matrix, Vector <Numerics.Complex32> input, Vector <Numerics.Complex32> result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Parameters checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner <Numerics.Complex32>();
            }

            _preconditioner.Initialize(matrix);

            // Compute r_0 = b - Ax_0 for some initial guess x_0
            // In this case we take x_0 = vector
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, result, input);

            // Choose r~ (for example, r~ = r_0)
            var tempResiduals = residuals.Clone();

            // create seven temporary vectors needed to hold temporary
            // coefficients. All vectors are mangled in each iteration.
            // These are defined here to prevent stressing the garbage collector
            var vecP     = new DenseVector(residuals.Count);
            var vecPdash = new DenseVector(residuals.Count);
            var nu       = new DenseVector(residuals.Count);
            var vecS     = new DenseVector(residuals.Count);
            var vecSdash = new DenseVector(residuals.Count);
            var temp     = new DenseVector(residuals.Count);
            var temp2    = new DenseVector(residuals.Count);

            // create some temporary float variables that are needed
            // to hold values in between iterations
            Numerics.Complex32 currentRho = 0;
            Numerics.Complex32 alpha      = 0;
            Numerics.Complex32 omega      = 0;

            var iterationNumber = 0;

            while (ShouldContinue(iterationNumber, result, input, residuals))
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.ConjugateDotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
                {
                    // Rho-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho / oldRho) * (alpha / omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                _preconditioner.Approximate(vecP, vecPdash);

                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho * 1 / tempResiduals.ConjugateDotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result.
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
                temp.Add(vecSdash, temp2);
                temp2.CopyTo(temp);
                temp.Add(result, temp2);
                temp2.CopyTo(temp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, temp, input, vecS))
                {
                    temp.CopyTo(result);

                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, residuals))
                    {
                        // We're all good now.
                        return;
                    }

                    // Continue the calculation
                    iterationNumber++;
                    continue;
                }

                // SOLVE Ms~ = s
                _preconditioner.Approximate(vecS, vecSdash);

                // temp = As~
                matrix.Multiply(vecSdash, temp);

                // omega_i = temp^T s / temp^T temp
                omega = temp.ConjugateDotProduct(vecS) / temp.ConjugateDotProduct(temp);

                // x_i = x_(i-1) + alpha_i p^ + omega_i s^
                temp.Multiply(-omega, residuals);
                residuals.Add(vecS, temp2);
                temp2.CopyTo(residuals);

                vecSdash.Multiply(omega, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                vecPdash.Multiply(alpha, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                // for continuation it is necessary that omega_i != 0.0f
                // If omega is only 1 ULP from zero then we fail.
                if (omega.Real.AlmostEqual(0, 1) && omega.Imaginary.AlmostEqual(0, 1))
                {
                    // Omega-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    // The residual calculation based on omega_i * s can be off by a factor 10. So here
                    // we calculate the real residual (which can be expensive) but we only do it if we're
                    // sufficiently close to the finish.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                iterationNumber++;
            }
        }
Ejemplo n.º 4
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // x_0 is initial guess
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary scalars
            Complex32 beta = 0;

            // Define the temporary vectors
            // rDash_0 = r_0
            Vector rdash = DenseVector.OfVector(residuals);

            // t_-1 = 0
            Vector t = new DenseVector(residuals.Count);
            Vector t0 = new DenseVector(residuals.Count);

            // w_-1 = 0
            Vector w = new DenseVector(residuals.Count);

            // Define the remaining temporary vectors
            Vector c = new DenseVector(residuals.Count);
            Vector p = new DenseVector(residuals.Count);
            Vector s = new DenseVector(residuals.Count);
            Vector u = new DenseVector(residuals.Count);
            Vector y = new DenseVector(residuals.Count);
            Vector z = new DenseVector(residuals.Count);

            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);
            Vector temp3 = new DenseVector(residuals.Count);

            // for (k = 0, 1, .... )
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
                p.Subtract(u, temp);

                temp.Multiply(beta, temp2);
                residuals.Add(temp2, p);

                // Solve M b_k = p_k
                _preconditioner.Approximate(p, temp);

                // s_k = A b_k
                matrix.Multiply(temp, s);

                // alpha_k = (r*_0 * r_k) / (r*_0 * s_k)
                var alpha = rdash.ConjugateDotProduct(residuals)/rdash.ConjugateDotProduct(s);

                // y_k = t_(k-1) - r_k - alpha_k * w_(k-1) + alpha_k s_k
                s.Subtract(w, temp);
                t.Subtract(residuals, y);

                temp.Multiply(alpha, temp2);
                y.Add(temp2, temp3);
                temp3.CopyTo(y);

                // Store the old value of t in t0
                t.CopyTo(t0);

                // t_k = r_k - alpha_k s_k
                s.Multiply(-alpha, temp2);
                residuals.Add(temp2, t);

                // Solve M d_k = t_k
                _preconditioner.Approximate(t, temp);

                // c_k = A d_k
                matrix.Multiply(temp, c);
                var cdot = c.ConjugateDotProduct(c);

                // cDot can only be zero if c is a zero vector
                // We'll set cDot to 1 if it is zero to prevent NaN's
                // Note that the calculation should continue fine because
                // c.DotProduct(t) will be zero and so will c.DotProduct(y)
                if (cdot.Real.AlmostEqual(0, 1) && cdot.Imaginary.AlmostEqual(0, 1))
                {
                    cdot = 1.0f;
                }

                // Even if we don't want to do any BiCGStab steps we'll still have
                // to do at least one at the start to initialize the
                // system, but we'll only have to take special measures
                // if we don't do any so ...
                var ctdot = c.ConjugateDotProduct(t);
                Complex32 eta;
                Complex32 sigma;
                if (((_numberOfBiCgStabSteps == 0) && (iterationNumber == 0)) || ShouldRunBiCgStabSteps(iterationNumber))
                {
                    // sigma_k = (c_k * t_k) / (c_k * c_k)
                    sigma = ctdot/cdot;

                    // eta_k = 0
                    eta = 0;
                }
                else
                {
                    var ydot = y.ConjugateDotProduct(y);

                    // yDot can only be zero if y is a zero vector
                    // We'll set yDot to 1 if it is zero to prevent NaN's
                    // Note that the calculation should continue fine because
                    // y.DotProduct(t) will be zero and so will c.DotProduct(y)
                    if (ydot.Real.AlmostEqual(0, 1) && ydot.Imaginary.AlmostEqual(0, 1))
                    {
                        ydot = 1.0f;
                    }

                    var ytdot = y.ConjugateDotProduct(t);
                    var cydot = c.ConjugateDotProduct(y);

                    var denom = (cdot*ydot) - (cydot*cydot);

                    // sigma_k = ((y_k * y_k)(c_k * t_k) - (y_k * t_k)(c_k * y_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    sigma = ((ydot*ctdot) - (ytdot*cydot))/denom;

                    // eta_k = ((c_k * c_k)(y_k * t_k) - (y_k * c_k)(c_k * t_k)) / ((c_k * c_k)(y_k * y_k) - (y_k * c_k)(c_k * y_k))
                    eta = ((cdot*ytdot) - (cydot*ctdot))/denom;
                }

                // u_k = sigma_k s_k + eta_k (t_(k-1) - r_k + beta_(k-1) u_(k-1))
                u.Multiply(beta, temp2);
                t0.Add(temp2, temp);

                temp.Subtract(residuals, temp3);
                temp3.CopyTo(temp);
                temp.Multiply(eta, temp);

                s.Multiply(sigma, temp2);
                temp.Add(temp2, u);

                // z_k = sigma_k r_k +_ eta_k z_(k-1) - alpha_k u_k
                z.Multiply(eta, z);
                u.Multiply(-alpha, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                residuals.Multiply(sigma, temp2);
                z.Add(temp2, temp3);
                temp3.CopyTo(z);

                // x_(k+1) = x_k + alpha_k p_k + z_k
                p.Multiply(alpha, temp2);
                xtemp.Add(temp2, temp3);
                temp3.CopyTo(xtemp);

                xtemp.Add(z, temp3);
                temp3.CopyTo(xtemp);

                // r_(k+1) = t_k - eta_k y_k - sigma_k c_k
                // Copy the old residuals to a temp vector because we'll
                // need those in the next step
                residuals.CopyTo(t0);

                y.Multiply(-eta, temp2);
                t.Add(temp2, residuals);

                c.Multiply(-sigma, temp2);
                residuals.Add(temp2, temp3);
                temp3.CopyTo(residuals);

                // beta_k = alpha_k / sigma_k * (r*_0 * r_(k+1)) / (r*_0 * r_k)
                // But first we check if there is a possible NaN. If so just reset beta to zero.
                beta = (!sigma.Real.AlmostEqual(0, 1) || !sigma.Imaginary.AlmostEqual(0, 1)) ? alpha/sigma*rdash.ConjugateDotProduct(residuals)/rdash.ConjugateDotProduct(t0) : 0;

                // w_k = c_k + beta_k s_k
                s.Multiply(beta, temp2);
                c.Add(temp2, w);

                // Get the real value
                _preconditioner.Approximate(xtemp, result);

                // Now check for convergence
                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                // Next iteration.
                iterationNumber++;
            }
        }
Ejemplo n.º 5
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Error checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (input.Count != matrix.RowCount || result.Count != input.Count)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(matrix, input, result);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // Choose an initial guess x_0
            // Take x_0 = 0
            Vector xtemp = new DenseVector(input.Count);

            // Choose k vectors q_1, q_2, ..., q_k
            // Build a new set if:
            // a) the stored set doesn't exist (i.e. == null)
            // b) Is of an incorrect length (i.e. too long)
            // c) The vectors are of an incorrect length (i.e. too long or too short)
            var useOld = false;
            if (_startingVectors != null)
            {
                // We don't accept collections with zero starting vectors so ...
                if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
                {
                    // Only check the first vector for sizing. If that matches we assume the 
                    // other vectors match too. If they don't the process will crash
                    if (_startingVectors[0].Count == input.Count)
                    {
                        useOld = true;
                    }
                }
            }

            _startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);

            // Store the number of starting vectors. Not really necessary but easier to type :)
            var k = _startingVectors.Count;

            // r_0 = b - Ax_0
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, xtemp, input);

            // Define the temporary values
            var c = new Complex[k];

            // Define the temporary vectors
            Vector gtemp = new DenseVector(residuals.Count);

            Vector u = new DenseVector(residuals.Count);
            Vector utemp = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp1 = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            Vector zd = new DenseVector(residuals.Count);
            Vector zg = new DenseVector(residuals.Count);
            Vector zw = new DenseVector(residuals.Count);

            var d = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // g_0 = r_0
            var g = CreateVectorArray(_startingVectors.Count, residuals.Count);
            residuals.CopyTo(g[k - 1]);

            var w = CreateVectorArray(_startingVectors.Count, residuals.Count);

            // FOR (j = 0, 1, 2 ....)
            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, xtemp, input, residuals))
            {
                // SOLVE M g~_((j-1)k+k) = g_((j-1)k+k)
                _preconditioner.Approximate(g[k - 1], gtemp);

                // w_((j-1)k+k) = A g~_((j-1)k+k)
                matrix.Multiply(gtemp, w[k - 1]);

                // c_((j-1)k+k) = q^T_1 w_((j-1)k+k)
                c[k - 1] = _startingVectors[0].ConjugateDotProduct(w[k - 1]);
                if (c[k - 1].Real.AlmostEqual(0, 1) && c[k - 1].Imaginary.AlmostEqual(0, 1))
                {
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                // alpha_(jk+1) = q^T_1 r_((j-1)k+k) / c_((j-1)k+k)
                var alpha = _startingVectors[0].ConjugateDotProduct(residuals)/c[k - 1];

                // u_(jk+1) = r_((j-1)k+k) - alpha_(jk+1) w_((j-1)k+k)
                w[k - 1].Multiply(-alpha, temp);
                residuals.Add(temp, u);

                // SOLVE M u~_(jk+1) = u_(jk+1)
                _preconditioner.Approximate(u, temp1);
                temp1.CopyTo(utemp);

                // rho_(j+1) = -u^t_(jk+1) A u~_(jk+1) / ||A u~_(jk+1)||^2
                matrix.Multiply(temp1, temp);
                var rho = temp.ConjugateDotProduct(temp);

                // If rho is zero then temp is a zero vector and we're probably
                // about to have zero residuals (i.e. an exact solution).
                // So set rho to 1.0 because in the next step it will turn to zero.
                if (rho.Real.AlmostEqual(0, 1) && rho.Imaginary.AlmostEqual(0, 1))
                {
                    rho = 1.0;
                }

                rho = -u.ConjugateDotProduct(temp)/rho;

                // r_(jk+1) = rho_(j+1) A u~_(jk+1) + u_(jk+1)
                u.CopyTo(residuals);

                // Reuse temp
                temp.Multiply(rho, temp);
                residuals.Add(temp, temp2);
                temp2.CopyTo(residuals);

                // x_(jk+1) = x_((j-1)k_k) - rho_(j+1) u~_(jk+1) + alpha_(jk+1) g~_((j-1)k+k)
                utemp.Multiply(-rho, temp);
                xtemp.Add(temp, temp2);
                temp2.CopyTo(xtemp);

                gtemp.Multiply(alpha, gtemp);
                xtemp.Add(gtemp, temp2);
                temp2.CopyTo(xtemp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                {
                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, xtemp, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                    {
                        // We're all good now.
                        // Exit from the while loop.
                        break;
                    }
                }

                // FOR (i = 1,2, ...., k)
                for (var i = 0; i < k; i++)
                {
                    // z_d = u_(jk+1)
                    u.CopyTo(zd);

                    // z_g = r_(jk+i)
                    residuals.CopyTo(zg);

                    // z_w = 0
                    zw.Clear();

                    // FOR (s = i, ...., k-1) AND j >= 1
                    Complex beta;
                    if (iterationNumber >= 1)
                    {
                        for (var s = i; s < k - 1; s++)
                        {
                            // beta^(jk+i)_((j-1)k+s) = -q^t_(s+1) z_d / c_((j-1)k+s)
                            beta = -_startingVectors[s + 1].ConjugateDotProduct(zd)/c[s];

                            // z_d = z_d + beta^(jk+i)_((j-1)k+s) d_((j-1)k+s)
                            d[s].Multiply(beta, temp);
                            zd.Add(temp, temp2);
                            temp2.CopyTo(zd);

                            // z_g = z_g + beta^(jk+i)_((j-1)k+s) g_((j-1)k+s)
                            g[s].Multiply(beta, temp);
                            zg.Add(temp, temp2);
                            temp2.CopyTo(zg);

                            // z_w = z_w + beta^(jk+i)_((j-1)k+s) w_((j-1)k+s)
                            w[s].Multiply(beta, temp);
                            zw.Add(temp, temp2);
                            temp2.CopyTo(zw);
                        }
                    }

                    beta = rho*c[k - 1];
                    if (beta.Real.AlmostEqual(0, 1) && beta.Imaginary.AlmostEqual(0, 1))
                    {
                        throw new Exception("Iterative solver experience a numerical break down");
                    }

                    // beta^(jk+i)_((j-1)k+k) = -(q^T_1 (r_(jk+1) + rho_(j+1) z_w)) / (rho_(j+1) c_((j-1)k+k))
                    zw.Multiply(rho, temp2);
                    residuals.Add(temp2, temp);
                    beta = -_startingVectors[0].ConjugateDotProduct(temp)/beta;

                    // z_g = z_g + beta^(jk+i)_((j-1)k+k) g_((j-1)k+k)
                    g[k - 1].Multiply(beta, temp);
                    zg.Add(temp, temp2);
                    temp2.CopyTo(zg);

                    // z_w = rho_(j+1) (z_w + beta^(jk+i)_((j-1)k+k) w_((j-1)k+k))
                    w[k - 1].Multiply(beta, temp);
                    zw.Add(temp, temp2);
                    temp2.CopyTo(zw);
                    zw.Multiply(rho, zw);

                    // z_d = r_(jk+i) + z_w
                    residuals.Add(zw, zd);

                    // FOR (s = 1, ... i - 1)
                    for (var s = 0; s < i - 1; s++)
                    {
                        // beta^(jk+i)_(jk+s) = -q^T_s+1 z_d / c_(jk+s)
                        beta = -_startingVectors[s + 1].ConjugateDotProduct(zd)/c[s];

                        // z_d = z_d + beta^(jk+i)_(jk+s) * d_(jk+s)
                        d[s].Multiply(beta, temp);
                        zd.Add(temp, temp2);
                        temp2.CopyTo(zd);

                        // z_g = z_g + beta^(jk+i)_(jk+s) * g_(jk+s)
                        g[s].Multiply(beta, temp);
                        zg.Add(temp, temp2);
                        temp2.CopyTo(zg);
                    }

                    // d_(jk+i) = z_d - u_(jk+i)
                    zd.Subtract(u, d[i]);

                    // g_(jk+i) = z_g + z_w
                    zg.Add(zw, g[i]);

                    // IF (i < k - 1)
                    if (i < k - 1)
                    {
                        // c_(jk+1) = q^T_i+1 d_(jk+i)
                        c[i] = _startingVectors[i + 1].ConjugateDotProduct(d[i]);
                        if (c[i].Real.AlmostEqual(0, 1) && c[i].Imaginary.AlmostEqual(0, 1))
                        {
                            throw new Exception("Iterative solver experience a numerical break down");
                        }

                        // alpha_(jk+i+1) = q^T_(i+1) u_(jk+i) / c_(jk+i)
                        alpha = _startingVectors[i + 1].ConjugateDotProduct(u)/c[i];

                        // u_(jk+i+1) = u_(jk+i) - alpha_(jk+i+1) d_(jk+i)
                        d[i].Multiply(-alpha, temp);
                        u.Add(temp, temp2);
                        temp2.CopyTo(u);

                        // SOLVE M g~_(jk+i) = g_(jk+i)
                        _preconditioner.Approximate(g[i], gtemp);

                        // x_(jk+i+1) = x_(jk+i) + rho_(j+1) alpha_(jk+i+1) g~_(jk+i)
                        gtemp.Multiply(rho*alpha, temp);
                        xtemp.Add(temp, temp2);
                        temp2.CopyTo(xtemp);

                        // w_(jk+i) = A g~_(jk+i)
                        matrix.Multiply(gtemp, w[i]);

                        // r_(jk+i+1) = r_(jk+i) - rho_(j+1) alpha_(jk+i+1) w_(jk+i)
                        w[i].Multiply(-rho*alpha, temp);
                        residuals.Add(temp, temp2);
                        temp2.CopyTo(residuals);

                        // We can check the residuals here if they're close
                        if (!ShouldContinue(iterationNumber, xtemp, input, residuals))
                        {
                            // Recalculate the residuals and go round again. This is done to ensure that
                            // we have the proper residuals.
                            CalculateTrueResidual(matrix, residuals, xtemp, input);
                        }
                    }
                } // END ITERATION OVER i

                iterationNumber++;
            }

            // copy the temporary result to the real result vector
            xtemp.CopyTo(result);
        }
Ejemplo n.º 6
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
        /// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
        /// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
        public void Solve(Matrix matrix, Vector input, Vector result)
        {
            // If we were stopped before, we are no longer
            // We're doing this at the start of the method to ensure
            // that we can use these fields immediately.
            _hasBeenStopped = false;

            // Parameters checks
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
            }

            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
            }

            // Initialize the solver fields
            // Set the convergence monitor
            if (_iterator == null)
            {
                _iterator = Iterator.CreateDefault();
            }

            if (_preconditioner == null)
            {
                _preconditioner = new UnitPreconditioner();
            }

            _preconditioner.Initialize(matrix);

            // Compute r_0 = b - Ax_0 for some initial guess x_0
            // In this case we take x_0 = vector
            // This is basically a SAXPY so it could be made a lot faster
            Vector residuals = new DenseVector(matrix.RowCount);
            CalculateTrueResidual(matrix, residuals, result, input);

            // Choose r~ (for example, r~ = r_0)
            var tempResiduals = residuals.Clone();

            // create seven temporary vectors needed to hold temporary
            // coefficients. All vectors are mangled in each iteration.
            // These are defined here to prevent stressing the garbage collector
            Vector vecP = new DenseVector(residuals.Count);
            Vector vecPdash = new DenseVector(residuals.Count);
            Vector nu = new DenseVector(residuals.Count);
            Vector vecS = new DenseVector(residuals.Count);
            Vector vecSdash = new DenseVector(residuals.Count);
            Vector temp = new DenseVector(residuals.Count);
            Vector temp2 = new DenseVector(residuals.Count);

            // create some temporary float variables that are needed
            // to hold values in between iterations
            Complex32 currentRho = 0;
            Complex32 alpha = 0;
            Complex32 omega = 0;

            var iterationNumber = 0;
            while (ShouldContinue(iterationNumber, result, input, residuals))
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.ConjugateDotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
                {
                    // Rho-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho/oldRho)*(alpha/omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                _preconditioner.Approximate(vecP, vecPdash);

                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho*1/tempResiduals.ConjugateDotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result. 
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
                temp.Add(vecSdash, temp2);
                temp2.CopyTo(temp);
                temp.Add(result, temp2);
                temp2.CopyTo(temp);

                // Check convergence and stop if we are converged.
                if (!ShouldContinue(iterationNumber, temp, input, vecS))
                {
                    temp.CopyTo(result);

                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, result, input);

                    // Now recheck the convergence
                    if (!ShouldContinue(iterationNumber, result, input, residuals))
                    {
                        // We're all good now.
                        return;
                    }

                    // Continue the calculation
                    iterationNumber++;
                    continue;
                }

                // SOLVE Ms~ = s
                _preconditioner.Approximate(vecS, vecSdash);

                // temp = As~
                matrix.Multiply(vecSdash, temp);

                // omega_i = temp^T s / temp^T temp
                omega = temp.ConjugateDotProduct(vecS)/temp.ConjugateDotProduct(temp);

                // x_i = x_(i-1) + alpha_i p^ + omega_i s^
                temp.Multiply(-omega, residuals);
                residuals.Add(vecS, temp2);
                temp2.CopyTo(residuals);

                vecSdash.Multiply(omega, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                vecPdash.Multiply(alpha, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                // for continuation it is necessary that omega_i != 0.0f
                // If omega is only 1 ULP from zero then we fail.
                if (omega.Real.AlmostEqual(0, 1) && omega.Imaginary.AlmostEqual(0, 1))
                {
                    // Omega-type breakdown
                    throw new Exception("Iterative solver experience a numerical break down");
                }

                if (!ShouldContinue(iterationNumber, result, input, residuals))
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    // The residual calculation based on omega_i * s can be off by a factor 10. So here
                    // we calculate the real residual (which can be expensive) but we only do it if we're
                    // sufficiently close to the finish.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                iterationNumber++;
            }
        }
Ejemplo n.º 7
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
        /// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
        /// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <Complex> matrix, Vector <Complex> input, Vector <Complex> result, Iterator <Complex> iterator, IPreconditioner <Complex> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException("Matrix must be square.", nameof(matrix));
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException("All vectors must have the same dimensionality.");
            }

            if (input.Count != matrix.RowCount)
            {
                throw Matrix.DimensionsDontMatch <ArgumentException>(input, result);
            }

            if (iterator == null)
            {
                iterator = new Iterator <Complex>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <Complex>();
            }

            preconditioner.Initialize(matrix);

            // Compute r_0 = b - Ax_0 for some initial guess x_0
            // In this case we take x_0 = vector
            // This is basically a SAXPY so it could be made a lot faster
            var residuals = new DenseVector(matrix.RowCount);

            CalculateTrueResidual(matrix, residuals, result, input);

            // Choose r~ (for example, r~ = r_0)
            var tempResiduals = residuals.Clone();

            // create seven temporary vectors needed to hold temporary
            // coefficients. All vectors are mangled in each iteration.
            // These are defined here to prevent stressing the garbage collector
            var vecP     = new DenseVector(residuals.Count);
            var vecPdash = new DenseVector(residuals.Count);
            var nu       = new DenseVector(residuals.Count);
            var vecS     = new DenseVector(residuals.Count);
            var vecSdash = new DenseVector(residuals.Count);
            var temp     = new DenseVector(residuals.Count);
            var temp2    = new DenseVector(residuals.Count);

            // create some temporary double variables that are needed
            // to hold values in between iterations
            Complex currentRho = 0;
            Complex alpha      = 0;
            Complex omega      = 0;

            var iterationNumber = 0;

            while (iterator.DetermineStatus(iterationNumber, result, input, residuals) == IterationStatus.Continue)
            {
                // rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
                var oldRho = currentRho;
                currentRho = tempResiduals.ConjugateDotProduct(residuals);

                // if (rho_(i-1) == 0) // METHOD FAILS
                // If rho is only 1 ULP from zero then we fail.
                if (currentRho.Real.AlmostEqualNumbersBetween(0, 1) && currentRho.Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    // Rho-type breakdown
                    throw new NumericalBreakdownException();
                }

                if (iterationNumber != 0)
                {
                    // beta_(i-1) = (rho_(i-1)/rho_(i-2))(alpha_(i-1)/omega(i-1))
                    var beta = (currentRho / oldRho) * (alpha / omega);

                    // p_i = r_(i-1) + beta_(i-1)(p_(i-1) - omega_(i-1) * nu_(i-1))
                    nu.Multiply(-omega, temp);
                    vecP.Add(temp, temp2);
                    temp2.CopyTo(vecP);

                    vecP.Multiply(beta, vecP);
                    vecP.Add(residuals, temp2);
                    temp2.CopyTo(vecP);
                }
                else
                {
                    // p_i = r_(i-1)
                    residuals.CopyTo(vecP);
                }

                // SOLVE Mp~ = p_i // M = preconditioner
                preconditioner.Approximate(vecP, vecPdash);

                // nu_i = Ap~
                matrix.Multiply(vecPdash, nu);

                // alpha_i = rho_(i-1)/ (r~^T nu_i) = rho / dotproduct(r~ and nu_i)
                alpha = currentRho * 1 / tempResiduals.ConjugateDotProduct(nu);

                // s = r_(i-1) - alpha_i nu_i
                nu.Multiply(-alpha, temp);
                residuals.Add(temp, vecS);

                // Check if we're converged. If so then stop. Otherwise continue;
                // Calculate the temporary result.
                // Be careful not to change any of the temp vectors, except for
                // temp. Others will be used in the calculation later on.
                // x_i = x_(i-1) + alpha_i * p^_i + s^_i
                vecPdash.Multiply(alpha, temp);
                temp.Add(vecSdash, temp2);
                temp2.CopyTo(temp);
                temp.Add(result, temp2);
                temp2.CopyTo(temp);

                // Check convergence and stop if we are converged.
                if (iterator.DetermineStatus(iterationNumber, temp, input, vecS) != IterationStatus.Continue)
                {
                    temp.CopyTo(result);

                    // Calculate the true residual
                    CalculateTrueResidual(matrix, residuals, result, input);

                    // Now recheck the convergence
                    if (iterator.DetermineStatus(iterationNumber, result, input, residuals) != IterationStatus.Continue)
                    {
                        // We're all good now.
                        return;
                    }

                    // Continue the calculation
                    iterationNumber++;
                    continue;
                }

                // SOLVE Ms~ = s
                preconditioner.Approximate(vecS, vecSdash);

                // temp = As~
                matrix.Multiply(vecSdash, temp);

                // omega_i = temp^T s / temp^T temp
                omega = temp.ConjugateDotProduct(vecS) / temp.ConjugateDotProduct(temp);

                // x_i = x_(i-1) + alpha_i p^ + omega_i s^
                temp.Multiply(-omega, residuals);
                residuals.Add(vecS, temp2);
                temp2.CopyTo(residuals);

                vecSdash.Multiply(omega, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                vecPdash.Multiply(alpha, temp);
                result.Add(temp, temp2);
                temp2.CopyTo(result);

                // for continuation it is necessary that omega_i != 0.0
                // If omega is only 1 ULP from zero then we fail.
                if (omega.Real.AlmostEqualNumbersBetween(0, 1) && omega.Imaginary.AlmostEqualNumbersBetween(0, 1))
                {
                    // Omega-type breakdown
                    throw new NumericalBreakdownException();
                }

                if (iterator.DetermineStatus(iterationNumber, result, input, residuals) != IterationStatus.Continue)
                {
                    // Recalculate the residuals and go round again. This is done to ensure that
                    // we have the proper residuals.
                    // The residual calculation based on omega_i * s can be off by a factor 10. So here
                    // we calculate the real residual (which can be expensive) but we only do it if we're
                    // sufficiently close to the finish.
                    CalculateTrueResidual(matrix, residuals, result, input);
                }

                iterationNumber++;
            }
        }