private double UpdateMeanSquaredError(WaveData waveData)
        {
            var input      = waveData.WaveInputs.ToArray();
            var outputData = waveData.WaveScores.ToArray();
            var error      = 0.0;
            var avmError   = 0.0;

            for (var i = 0; i < outputData.Length; i++)
            {
                var prediction = network.Compute(input[i])[0];
                var av         = i == 0 ? 0 : outputData.Take(i).Average(d => d);
                var actual     = outputData[i];
                error    += Math.Pow(prediction - actual, 2);
                avmError += Math.Pow(av - actual, 2);
            }

            error    /= outputData.Length;
            avmError /= outputData.Length;

            LastSampleSize = outputData.Length;
            LastMSE        = error;
            AVMMSE         = avmError;

            return(error);
        }
Ejemplo n.º 2
0
        /// <summary>
        ///   Gets the learning data needed to train the <see cref="LayerIndex">currently
        ///   selected layer</see>. The return of this function should then be passed to
        ///   <see cref="RunEpoch(double[][])"/> to actually run a learning epoch.
        /// </summary>
        ///
        /// <param name="batches">The mini-batches of input data.</param>
        ///
        /// <returns>The learning data for the current layer.</returns>
        ///
        public double[][][] GetLayerInput(double[][][] batches)
        {
            if (layerIndex == 0)
            {
                return(batches);
            }

            var outputBatches = new double[batches.Length][][];

            for (int j = 0; j < batches.Length; j++)
            {
                int batchSize = batches[j].Length;

                double[][] inputs  = batches[j];
                double[][] outputs = new double[batchSize][];

                for (int i = 0; i < inputs.Length; i++)
                {
                    network.Compute(inputs[i]); // double[] responses =
                    outputs[i] = network.Machines[layerIndex - 1].Hidden.Output;
                }

                outputBatches[j] = outputs;
            }

            return(outputBatches);
        }
Ejemplo n.º 3
0
        public void ComputeNetwork(double[][] input, double[][] output)
        {
            int err = 0;

            for (int i = 0; i < input.Length; i++)
            {
                var networkOutput = _network.Compute(input[i]);
                if (Array.IndexOf(networkOutput, networkOutput.Max()) != Array.IndexOf(output[i], output[i].Max()))
                {
                    err++;
                }
            }
            Console.WriteLine($"Total:{input.Length} \n  Err:{err} \n Err(%) ={((double)err / (double)input.Length)*100}%");
        }
Ejemplo n.º 4
0
        public int DoTesting(DeepBeliefNetwork network, string[] images, IOutputWriter writer)
        {
            int totalCount = images.Length;

            double[][] testInputs;
            double[][] testOutputs;
            string     binaryFilePath = Path.Combine(ApplicationPath, TrainingFileName);

            //binary file generation
            ImageUtil util = new ImageUtil(ImageDimentionConstant.WIDTH, ImageDimentionConstant.HEIGHT);

            util.GenerateBinaryFile(binaryFilePath, images);

            // Load  dataset.
            testInputs = DataManager.Load(binaryFilePath, out testOutputs);

            int correct = 0;

            for (int i = 0; i < totalCount; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            writer?.WriteOutput("Correct " + correct + "/" + totalCount + ", " + Math.Round(((double)correct / (double)totalCount * 100), 2) + "%");

            return(correct);
        }
Ejemplo n.º 5
0
        public NeutralNetwork(double[][] input, double[][] output, double[][] testInput, double[][] testOutput)
        {
            var network = new DeepBeliefNetwork(28 * 28, new int[] { 1000, 10 });

            new GaussianWeights(network).Randomize();
            network.UpdateVisibleWeights();

            var teacher = new DeepNeuralNetworkLearning(network)
            {
                Algorithm  = (ann, i) => new ParallelResilientBackpropagationLearning(ann),
                LayerIndex = network.Machines.Count - 1,
            };
            var layerData = teacher.GetLayerInput(input);

            for (int i = 0; i < 5000; i++)
            {
                teacher.RunEpoch(layerData, output);
            }
            network.UpdateVisibleWeights();
            var inputArr = new double[28 * 28];

            for (int i = 0; i < 28 * 28; i++)
            {
                inputArr[i] = testInput[0][i];
            }

            var a = network.Compute(testInput[0]);

            Console.WriteLine(Array.IndexOf(a, a.Max()));
        }
        public void Compute()
        {
            if (!CanCompute)
            {
                return;
            }

            double[]          input    = UserInput;
            DeepBeliefNetwork network  = Main.Network;
            IDatabase         database = Main.Database;

            database.Normalize(input);

            {
                double[] output         = network.GenerateOutput(input);
                double[] reconstruction = network.Reconstruct(output);
                NetworkOutput = (database.ToBitmap(reconstruction).ToBitmapImage());
            }

            if (Main.CanClassify)
            {
                double[] output = network.Compute(input);
                int      imax; output.Max(out imax);
                Classification = imax;
            }
        }
Ejemplo n.º 7
0
        //進階分析,分析行為屬於哪種攻擊手法
        private static List <(string, int)> DeepAnalysis(DataFlowStatistics[] FlowStatistics)
        {
            List <(double[], string)> Inputs = DeepLearningTools.FlowStatisticsToLearningData(FlowStatistics);
            List <(string, int)>      Result = new List <(string, int)>();

            for (int i = 0; i < Inputs.Count; i++)
            {
                double[] outputValues = DBNetwork.Compute(Inputs[i].Item1);
                Result.Add((Inputs[i].Item2, Convert.ToInt32(DeepLearningTools.FormatOutputResult(outputValues))));
            }
            return(Result);
        }
Ejemplo n.º 8
0
        public void predict(double[] test)
        {
            var pre = network.Compute(test);
            int imax;

            pre.Max(out imax);
            Console.WriteLine("class : {0}", imax);
            foreach (var item in pre)
            {
                Console.WriteLine("{0}", item);
            }
        }
        private void Classify(object sender, EventArgs e)
        {
            if (_imageToClassify == null)
            {
                label1.Text = "You didn't choose an image!\n";
                label1.Refresh();
                return;
            }

            double[] input;
            _itoa.Convert(_imageToClassify, out input);
            double[] output = _network.Compute(input);
            label1.Text = "Prediction: " + _categories[GetResult(output)];
            label1.Refresh();
        }
Ejemplo n.º 10
0
        public CategoryClassification ClassifyToCategory(double[] dataToClassify)
        {
            var categories        = _configuration.Categories;
            var output            = _network.Compute(dataToClassify);
            var categoryIndex     = GetIndexOfResult(output);
            var predictedCategory = categories.Single(x => x.Index == categoryIndex);

            _guiLogger.LogWriteLine($"Prediction: {predictedCategory}");

            var result = new CategoryClassification(
                predictedCategory,
                output.Max());

            return(result);
        }
Ejemplo n.º 11
0
        public void CreateActivationNetworkTest()
        {
            double[][] inputs =
            {
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 1, 0, 1, 0, 0, 0 },
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 },
                new double[] { 0, 0, 1, 1, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 }
            };

            double[][] outputs =
            {
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 1 },
                new double[] { 1 },
                new double[] { 1 },
            };

            DeepBeliefNetwork network = createNetwork(inputs);

            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            for (int i = 0; i < 100; i++)
            {
                teacher.RunEpoch(inputs, outputs);
            }

            double[] actual = new double[outputs.Length];
            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = network.Compute(inputs[i])[0];
            }

            Assert.AreEqual(0, actual[0], 1e-10);
            Assert.AreEqual(0, actual[1], 1e-10);
            Assert.AreEqual(0, actual[2], 1e-10);
            Assert.AreEqual(1, actual[3], 1e-10);
            Assert.AreEqual(1, actual[4], 1e-10);
            Assert.AreEqual(1, actual[5], 1e-10);
        }
    /// <summary>
    /// Evaluate
    /// </summary>
    /// <param name="sender"></param>
    /// <param name="e"></param>
    public void Button3_Click()
    {
        double[] output = network.Compute(selectedColor);

        //  Get an index with most probability.
        string result = "";

        switch (System.Convert.ToInt32(output[0]))
        {
        case 1:
            result = "Warm Color";
            break;

        case -1:
            result = "Cold Color";
            break;
        }
        //string result = output[0] >= 0 ? "Warm Color" : "Cold Color";

        label1.text = result;
    }
Ejemplo n.º 13
0
 public double[] GenerateOutput(double[] inputs)
 {
     return(network.Compute(inputs));
 }
Ejemplo n.º 14
0
        static void Main(string[] args)
        {
            //Generate the training data
            int            keySize         = 64;
            int            messageSize     = 64;
            int            trainingSetSize = 100;
            List <Triplet> trainingSet     = GenerateDESDataset(trainingSetSize, keySize, messageSize);

            double[][] inputTraining, outputTraining;
            Triplet.Transform2IO(trainingSet, out inputTraining, out outputTraining);

            //Generate the test data
            List <Triplet> testSet = GenerateDESDataset(trainingSetSize, keySize, messageSize);

            double[][] inputTest, outputTest;
            Triplet.Transform2IO(testSet, out inputTest, out outputTest);

            //Find the right sizes, not sure why I have to do that :-/
            int inputSize  = trainingSet.First().original.Count() + trainingSet.First().encrypted.Count();
            int outputSize = trainingSet.First().key.Count();

            //Create a network
            var function = new SigmoidFunction(2.0);
            //ActivationNetwork network = new ActivationNetwork(function, inputSize, 25, outputSize);
            //ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            DeepBeliefNetwork network = new DeepBeliefNetwork(inputSize, 10, outputSize);

            Accord.Neuro.Learning.DeepNeuralNetworkLearning teacher = new DeepNeuralNetworkLearning(network);

            //Train the network
            int    epoch               = 0;
            double stopError           = 0.1;
            int    resets              = 0;
            double minimumErrorReached = double.PositiveInfinity;

            while (minimumErrorReached > stopError && resets < 1)
            {
                network.Randomize();
                //teacher.Reset(0.0125);

                double errorTrain = double.PositiveInfinity;
                for (epoch = 0; epoch < 500000 && errorTrain > stopError; epoch++)
                {
                    errorTrain = teacher.RunEpoch(inputTraining, outputTraining) / (double)trainingSetSize;
                    //Console.WriteLine("Epoch " + epoch + " = \t" + error);
                    if (errorTrain < minimumErrorReached)
                    {
                        minimumErrorReached = errorTrain;
                        network.Save("cryptoDESNetwork.mlp");
                    }
                    Console.Clear();
                    Console.WriteLine("Epoch : " + epoch);
                    Console.WriteLine("Train Set  Error : " + errorTrain.ToString("N2"));
                    double errorTest = teacher.ComputeError(inputTest, outputTest) / (double)inputTest.Count();
                    Console.WriteLine("Test Set  Error : " + errorTest.ToString("N2"));
                }
                //Console.Write("Reset (" + error+")->");
                resets++;
            }
            Console.WriteLine();

            //Compute the reall error
            foreach (Triplet tReal in testSet)
            {
                double[] rIn, rOut, pOut;
                byte[]   brMsg, brEncrypted, brKey;
                tReal.ToBytes(out brMsg, out brEncrypted, out brKey);

                tReal.ToIO(out rIn, out rOut);
                pOut = network.Compute(rIn);

                Triplet tPredicted = new Triplet(rIn, pOut, messageSize);
                byte[]  bpMsg, bpEncrypted, bpKey;
                tPredicted.ToBytes(out bpMsg, out bpEncrypted, out bpKey);

                int wrongBytes = 0;
                for (int i = 0; i < keySize / 8; i++)
                {
                    if (brKey[i] != bpKey[i])
                    {
                        wrongBytes++;
                    }
                }
                Console.WriteLine("Wrong bytes = " + wrongBytes);
                //Console.WriteLine("REAL = \n" + tReal.GetBytesForm());
                //Console.WriteLine("Predicted = \n" + tPredicted.GetBytesForm());
            }

            Console.ReadKey();
        }
Ejemplo n.º 15
0
        public static void Learn(double[][] inputs, double[][] outputs)
        {
            var n           = (int)(count * 0.8);
            var testInputs  = inputs.Skip(n).ToArray();
            var testOutputs = outputs.Skip(n).ToArray();

            inputs  = inputs.Take(n).ToArray();
            outputs = outputs.Take(n).ToArray();

            var network = new DeepBeliefNetwork(inputs.First().Length, 10, 10);

            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();

            // Setup the learning algorithm.
            var teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };
            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);

            // Create mini-batches to speed learning.
            int[]        groups  = Classes.Random(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData          = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }


            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < n; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy.
            int correct = 0;

            for (int i = 0; i < testInputs.Length; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (Compare(outputValues, testOutputs[i]))
                {
                    correct++;
                }
            }
            network.Save("deeplearning-countbits.net");
            Console.WriteLine("Correct " + correct + "/" + testInputs.Length + ", " + Math.Round(((double)correct / (double)testInputs.Length * 100), 2) + "%");
        }
Ejemplo n.º 16
0
 public override double[] propagateToEnd(double[] inputVec, double[] storage = null)
 {
     return(classifier.Compute(inputVec));
 }
Ejemplo n.º 17
0
        static void Main(string[] args)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            const int SampleTrainingCount = 120;
            const int SampleTestCount     = 30;

            // Load ascii digits dataset.
            inputs = DataManager.LoadCSV(@"../../../data/iris.data", out outputs);
            //inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            // The first SampleTrainingCount data rows will be for training. The rest will be for testing.
            testInputs  = inputs.Skip(SampleTrainingCount).ToArray();
            testOutputs = outputs.Skip(SampleTrainingCount).ToArray();
            inputs      = inputs.Take(SampleTrainingCount).ToArray();
            outputs     = outputs.Take(SampleTrainingCount).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 1);

            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();

            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);

            // Create mini-batches to speed learning.
            int[]        groups  = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData          = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < SampleTrainingCount; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy. SampleTestCount item
            int correct = 0;

            for (int i = 0; i < SampleTestCount; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + SampleTestCount + ", " + Math.Round(((double)correct / (double)SampleTestCount * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }
        private void train_Click(object sender, EventArgs e)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;
            GetData(out inputs, out outputs, out testInputs, out testOutputs);

            Stopwatch sw = Stopwatch.StartNew();

            // Setup the deep belief network and initialize with random weights.
            _network = new DeepBeliefNetwork(inputs.First().Length, LAYERS);
            new GaussianWeights(_network, 0.1).Randomize();
            _network.UpdateVisibleWeights();

            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(_network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);

            // Create mini-batches to speed learning.
            int[]        groups  = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < _network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData          = teacher.GetLayerInput(batches);
                for (int i = 0; i < UNSUPERVISED_EPOCHS; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        label1.Text = "Layer: " + layerIndex + " Epoch: " + i + ", Error: " + error;
                        label1.Refresh();
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(_network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < SUPERVISED_EPOCHS; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    label1.Text = "Supervised: " + i + ", Error = " + error;
                    label1.Refresh();
                }
            }

            // Test the resulting accuracy.
            label1.Text = "";
            int correct = 0;

            for (int i = 0; i < testInputs.Length; i++)
            {
                double[] outputValues = _network.Compute(testInputs[i]);
                int      y            = GetResult(outputValues);
                int      t            = GetResult(testOutputs[i]);
                label1.Text += "predicted: " + y + " actual: " + t + "\n";
                label1.Refresh();
                if (y == t)
                {
                    correct++;
                }
            }
            sw.Stop();

            label1.Text  = "Correct " + correct + "/" + testInputs.Length + ", " + Math.Round(((double)correct / (double)testInputs.Length * 100), 2) + "%";
            label1.Text += "\nElapsed train+test time: " + sw.Elapsed;
            label1.Refresh();
        }
Ejemplo n.º 19
0
 public static double[][] Predict(DeepBeliefNetwork network, double[][] data)
 {
     return((from input in data select network.Compute(input)).ToArray());
 }
Ejemplo n.º 20
0
        public static void Excute2()
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            // Load ascii digits dataset.
            inputs = DataManager.Load(@"data.txt", out outputs);

            // The first 500 data rows will be for training. The rest will be for testing. 第一个500数据用来训练,剩下的用来测试
            testInputs  = inputs.Skip(500).ToArray();
            testOutputs = outputs.Skip(500).ToArray();
            inputs      = inputs.Take(500).ToArray();
            outputs     = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights. 设置深度神经网络和初始化随机砝码
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 10); //网络的输入数量Length  每个层中隐藏的神经元的数量10, 10

            new GaussianWeights(network, 0.1).Randomize();                                    //高斯砝码 使用标准偏差。一般值在0.001—0.1范围内。 默认值为0.1。
            //Randomize 使用高斯分布的网络的权重
            network.UpdateVisibleWeights();                                                   //通过复制隐藏层中权重的反向来更新可见层的权重。

            // Setup the learning algorithm. 设置学习法则
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network);

            //自定义神经网络法则
            // 设置用于指定和创建深度网络的每个层的学习算法的配置函数。Algorithm
            teacher.Algorithm = (h, v, i) => {
                return(new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1, //学习速率
                    Momentum = 0.5,     //动力
                    Decay = 0.001,      //腐烂
                });
            };

            //teacher.Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
            //{
            //    LearningRate = 0.1,
            //    Momentum = 0.5,
            //    Decay = 0.001,
            //};
            // Setup batches of input for learning.
            int batchCount = System.Math.Max(1, inputs.Length / 100);//设置学习次数

            // Create mini-batches to speed learning.
            int[]        groups  = Accord.Statistics.Classes.Random(inputs.Length, batchCount); //创建小批量 速度学习
            double[][][] batches = inputs.Separate(groups);                                     //分离
            // Learning data for the specified layer.
            double[][][] layerData;                                                             //为指定层 学习数据

            // Unsupervised learning on each hidden layer, except for the output layer.除了输出层之外,在每个隐藏层上进行无监督学习。
            //network.Machines.Count 在这个深网络的每一层上得到受限制的玻尔兹曼机器。
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;

                /*
                 * 获取训练数据所需的学习数据。
                 * 这个函数的返回应该被传递给No.Posial.SurvivyFieldWorksPr.RunEpoch(System,Pouth[2][])。
                 * 去实践一个学习时代。
                 */
                layerData = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)//200次学习
                {
                    var    learningResult = teacher.RunEpoch(layerData);
                    double error          = learningResult / inputs.Length;//RunEpoch运行纪元  Returns sum of learning errors.
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.对整个网络进行监督学习,提供输出分类。
            var teacher2 = new Neuro.Learning.BackPropagationLearning(network)
            {
                LearningRate = 0.1, //学习速率
                Momentum     = 0.5  //动力
            };

            // Run supervised learning.运行监督学习。
            for (int i = 0; i < 500; i++)//500次学习
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy. 测试结果的准确性
            int correct = 0;

            for (int i = 0; i < inputs.Length; i++)
            {
                var cp  = testInputs[i].ToList();
                var cpn = testInputs[i + 1];
                foreach (var item in cpn)
                {
                    cp.Add(item);
                }
                double[] outputValues = network.Compute(cp.ToArray());

                //double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + System.Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }
 public int Predict(double[] input)
 {
     double[] result = _neuralNetwork.Compute(input);
     return(DictionaryTools.DoublesToInt(result));
 }
Ejemplo n.º 22
0
        public void ExampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // We'll use a simple XOR function as input.

            double[][] inputs =
            {
                new double[] { 0, 0 }, // 0 xor 0
                new double[] { 0, 1 }, // 0 xor 1
                new double[] { 1, 0 }, // 1 xor 0
                new double[] { 1, 1 }, // 1 xor 1
            };

            // XOR output, corresponding to the input.
            double[][] outputs =
            {
                new double[] { 0 }, // 0 xor 0 = 0
                new double[] { 1 }, // 0 xor 1 = 1
                new double[] { 1 }, // 1 xor 0 = 1
                new double[] { 0 }, // 1 xor 1 = 0
            };

            // Setup the deep belief network (2 inputs, 3 hidden, 1 output)
            DeepBeliefNetwork network = new DeepBeliefNetwork(2, 3, 1);

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Update the visible layer with the new weights
            network.UpdateVisibleWeights();


            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };



            // Unsupervised learning on each hidden layer, except for the output.
            for (int i = 0; i < network.Layers.Length - 1; i++)
            {
                teacher.LayerIndex = i;

                // Compute the learning data with should be used
                var layerInput = teacher.GetLayerInput(inputs);

                // Train the layer iteratively
                for (int j = 0; j < 5000; j++)
                {
                    teacher.RunEpoch(layerInput);
                }
            }



            // Supervised learning on entire network, to provide output classification.
            var backpropagation = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 5000; i++)
            {
                backpropagation.RunEpoch(inputs, outputs);
            }


            // Test the resulting accuracy.
            int correct = 0;

            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double   outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == outputs[i].First())
                {
                    correct++;
                }
            }

            Assert.AreEqual(4, correct);
        }
Ejemplo n.º 23
0
        static double Neural_Network(bool show)
        {
            double       error      = new double();
            DataTable    entireData = DataController.MakeDataTable("../../drug_consumption.txt");
            Codification codebook   = new Codification(entireData);
            //"Alcohol", "Amfet", !!"Amyl", "Benzos", "Cofeine", "Cannabis", "Chocolate", "Coke", (1)"Crac", ///"Ecstasy", !!"Heroine",
            //    !!"Ketamine", //"LegalH", "LSD", !!"Meth", //"Mushrooms", "Nicotine", lol "Semeron", "VSA"
            string LookingFor = "Heroine";
            int    good       = 0;

            string[][] outputs;
            string[][] inputs = DataController.MakeString("../../drug_consumption_500.txt", out outputs);
            string[][] testOutputs;
            string[][] testInputs = DataController.MakeString("../../drug_consumption_500.txt", out testOutputs);

            DataTable outputs1     = DataController.MakeDataFromString(outputs, "output");
            DataTable inputs1      = DataController.MakeDataFromString(inputs, "input");
            DataTable testOutputs1 = DataController.MakeDataFromString(testOutputs, "output");
            DataTable testInputs1  = DataController.MakeDataFromString(testInputs, "input");

            DataTable Isymbols  = codebook.Apply(inputs1);
            DataTable Osymbols  = codebook.Apply(outputs1);
            DataTable TIsymbols = codebook.Apply(testInputs1);
            DataTable TOsymbols = codebook.Apply(testOutputs1);

            double[][] inputsD  = Isymbols.ToJagged <double>("Age", "Gender", "Education", "Country", "Eticnity", "Nscore", "Escore", "Oscore", "Ascore", "Cscore", "Impulsive", "SS");
            double[][] outputsD = Osymbols.ToJagged <double>(LookingFor);
            outputsD = DataController.convertDT(outputsD);
            double[][] inputsT  = TIsymbols.ToJagged <double>("Age", "Gender", "Education", "Country", "Eticnity", "Nscore", "Escore", "Oscore", "Ascore", "Cscore", "Impulsive", "SS");
            double[][] outputsT = TOsymbols.ToJagged <double>(LookingFor);
            outputsT = DataController.convertDT(outputsT);

            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 7);

            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();
            DeepBeliefNetworkLearning FirstLearner = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };

            int batchCount = Math.Max(1, inputs.Length / 100);

            int[]        groupsNew  = Accord.Statistics.Classes.Random(inputsD.Length, batchCount);
            double[][][] batchesNew = Accord.Statistics.Classes.Separate(inputsD, groupsNew);
            double[][][] layerData;

            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                FirstLearner.LayerIndex = layerIndex;
                layerData = FirstLearner.GetLayerInput(batchesNew);
                for (int i = 0; i < 500; i++)
                {
                    error = FirstLearner.RunEpoch(layerData) / inputsD.Length;
                    if (i % 10 == 0 && show == true)
                    {
                        Console.WriteLine("Error value(" + LookingFor + ", test: " + i + ") = " + error);
                    }
                }
            }

            var SecondLearner = new BackPropagationLearning(network)
            {
                LearningRate = 0.15,
                Momentum     = 0.7
            };
            EvolutionaryLearning teacher = new EvolutionaryLearning(network, 100);

            for (int i = 0; i < 800; i++)
            {
                error = teacher.RunEpoch(inputsD, outputsD) / inputsD.Length;
                if (i % 50 == 0 && show == true)
                {
                    Console.WriteLine("Error value(" + LookingFor + ", test: " + i + ") = " + error);
                }
            }

            for (int i = 0; i < 800; i++)
            {
                error = SecondLearner.RunEpoch(inputsD, outputsD) / inputsD.Length;
                if (i % 10 == 0 && show == true)
                {
                    Console.WriteLine("Error value(" + LookingFor + ", test: " + i + ") = " + error);
                }
            }

            for (int i = 0; i < inputsD.Length; i++)
            {
                double[] outputValues = network.Compute(inputsT[i]);
                if (outputValues.ToList().IndexOf(outputValues.Max()) == outputsT[i].ToList().IndexOf(outputsT[i].Max()))
                {
                    good++;
                }
            }
            if (show == true)
            {
                Console.WriteLine("Poprawność - " + Math.Round(((double)good / (double)inputsD.Length * 100), 4) + "%");
                Console.ReadKey();
            }

            return(error);
        }
Ejemplo n.º 24
0
        static void Main(string[] args)
        {
#if Cluster
            // output file
            List <string> outputLines = new List <string>();

            DateTime timeStart = new DateTime();
            // Some example documents.
            string[] documents = new GetTweets().GetTweetsFromExcelFile("Train_NN.xlsx");

            // Apply TF*IDF to the documents and get the resulting vectors.
            double[][] inputs = TFIDF.Transform(documents, 0);
            Console.WriteLine("time to transformation " + (DateTime.Now - timeStart));
            outputLines.Add("time to transformation " + (DateTime.Now - timeStart));
            Console.WriteLine("TFIDF transformation done...");

            inputs = TFIDF.Normalize(inputs);
            Console.WriteLine("time to Normalization " + (DateTime.Now - timeStart));
            outputLines.Add("time to Normalization " + (DateTime.Now - timeStart));
            Console.WriteLine("TFIDF Normalization done...");
            //inputs = Accord.Math.Norm.Norm2(inputs);

            string[] topics = TFIDF.Topics(documents, 5);
            Console.WriteLine("time to topics " + (DateTime.Now - timeStart));
            outputLines.Add("time to topics " + (DateTime.Now - timeStart));
            Console.WriteLine("Topics gathered...");

            //Random random = new Random();
            //double[][] rand = new double[inputs.Length][];

            //for (int i = 0; i < inputs.Length; i++)
            //{

            //    rand[i] = new double[inputs[i].Length];
            //    for (int j = 0; j < inputs[i].Length; j++)
            //    {

            //        rand[i][j] = random.NextDouble();
            //    }
            //}
            //Console.WriteLine("time to generate random numbers " + (DateTime.Now - timeStart));
            //outputLines.Add("time to topics " + (DateTime.Now - timeStart));
            //Console.WriteLine("Randoms generated...");

            KMeans cluster = new KMeans(topics.Length, Distance.Cosine);

            //cluster.MaxIterations = 1;
            //cluster.Randomize(rand);
            int[] index = cluster.Compute(inputs);
            Console.WriteLine("time to cluster " + (DateTime.Now - timeStart));
            outputLines.Add("time to cluster " + (DateTime.Now - timeStart));
            Console.WriteLine("Clustering done...");
            //Accord.Statistics.Analysis.PrincipalComponentAnalysis pca = new Accord.Statistics.Analysis.PrincipalComponentAnalysis(inputs, Accord.Statistics.Analysis.AnalysisMethod.Center);
            //pca.Compute();
            //double[][] newinput = pca.Transform(inputs, 2);

            //ScatterplotBox.Show("KMeans Clustering of Tweets", newinput, index).Hold();



            for (double i = 0; i <= topics.Length; i++)
            {
                outputLines.Add(Convert.ToString(i + 1));
                List <string> topicDecider = new List <string>();
                string[]      topicString;

                int j = 0;
                foreach (int x in index)
                {
                    if (x == i + 1)
                    {
                        topicDecider.Add(documents[j]);
                    }
                    j++;
                }

                topicString = TFIDF.Topics(topicDecider.ToArray(), topicDecider.Count / 2);

                if (topicString.Length == 0)
                {
                    outputLines.Add("--------------------------------------------------------");
                    outputLines.Add("TOPIC: other");
                    outputLines.Add("--------------------------------------------------------");
                }
                else
                {
                    outputLines.Add("--------------------------------------------------------");
                    outputLines.Add("TOPIC: " + topicString[0]);
                    outputLines.Add("--------------------------------------------------------");
                }

                j = 0;
                foreach (int x in index)
                {
                    if (x == i + 1)
                    {
                        outputLines.Add("Tweet ID " + j + ":\t" + documents[j]);
                    }
                    j++;
                }
                outputLines.Add("");
                outputLines.Add("");
                outputLines.Add("");
                outputLines.Add("");
            }

            System.IO.File.WriteAllLines(@"Train_NN_2.txt", outputLines.ToArray());
            Console.WriteLine("Output is written...");
#else
            // output file
            List <string> outputLines = new List <string>();

            DateTime timeStart = new DateTime();
            // Some example documents.
            string[]   documents_Train = new GetTweets().GetTweetsFromExcelFile("Train_NN.xlsx");
            double[][] Train_Labels    = new GetTweets().GetLabelsFromExcelFile("Train_Labels.xlsx");

            // Apply TF*IDF to the documents and get the resulting vectors.
            double[][] inputs = TFIDF.Transform(documents_Train, 0);
            Console.WriteLine("time to transformation " + (DateTime.Now - timeStart));
            outputLines.Add("time to transformation " + (DateTime.Now - timeStart));
            Console.WriteLine("TFIDF transformation done...");

            inputs = TFIDF.Normalize(inputs);
            Console.WriteLine("time to Normalization " + (DateTime.Now - timeStart));
            outputLines.Add("time to Normalization " + (DateTime.Now - timeStart));
            Console.WriteLine("TFIDF Normalization done...");


            //double[][] inputs;
            double[][] train_input = new double[140][];
            double[][] outputs;
            double[][] testInputs  = new double[1000 - 140][];
            double[][] testOutputs = new double[1000 - 140][];

            for (int i = 0; i < 140; i++)
            {
                train_input[i] = new double[inputs[i].Length];
                for (int j = 0; j < inputs[i].Length; j++)
                {
                    train_input[i][j] = inputs[i][j];
                }
            }

            for (int i = 0; i < 1000 - 140; i++)
            {
                testInputs[i] = new double[inputs[i].Length];
                for (int j = 0; j < inputs[i].Length; j++)
                {
                    testInputs[i][j] = inputs[i][j];
                }
            }


            // The first 500 data rows will be for training. The rest will be for testing.
            //testInputs = inputs.Skip(500).ToArray();
            //testOutputs = outputs.Skip(500).ToArray();
            //inputs = inputs.Take(500).ToArray();
            //outputs = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(train_input.First().Length, 7);
            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();

            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, train_input.Length / 100);
            // Create mini-batches to speed learning.
            int[]        groups  = Accord.Statistics.Tools.RandomGroups(train_input.Length, batchCount);
            double[][][] batches = train_input.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData          = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / train_input.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            //Transpose
            double[][] Train_Labels_T = new double[140][];
            for (int i = 0; i < 140; i++)
            {
                Train_Labels_T[i] = new double[7];
                for (int j = 0; j < 7; j++)
                {
                    Train_Labels_T[i][j] = Train_Labels[j][i];
                }
            }

            // Run supervised learning.
            for (int i = 0; i < 500; i++)
            {
                double error = teacher2.RunEpoch(train_input, Train_Labels_T) / train_input.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }
            outputLines.Add("time to Training " + (DateTime.Now - timeStart));
            // Test the resulting accuracy.
            double[][] outputValues = new double[testInputs.Length][];
            for (int i = 0; i < testInputs.Length; i++)
            {
                outputValues[i] = network.Compute(testInputs[i]);
            }
            outputLines.Add("time to Testing/clustering " + (DateTime.Now - timeStart));
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");

            List <string> class1 = new List <string>();
            List <string> class2 = new List <string>();
            List <string> class3 = new List <string>();
            List <string> class4 = new List <string>();
            List <string> class5 = new List <string>();
            List <string> class6 = new List <string>();
            List <string> class7 = new List <string>();

            //creating output file
            for (int i = 0; i < documents_Train.Length; i++)
            {
                if (i < 10 && i > -1)
                {
                    if (i == 0)
                    {
                        class1.Add("-------------------------------");
                        class1.Add("TOPIC: WEATHER");
                        class1.Add("-------------------------------");
                    }
                    class1.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 20 && i > 9)
                {
                    if (i == 10)
                    {
                        class2.Add("-------------------------------");
                        class2.Add("TOPIC: MUSIC");
                        class2.Add("-------------------------------");
                    }
                    class2.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 30 && i > 19)
                {
                    if (i == 20)
                    {
                        class3.Add("-------------------------------");
                        class3.Add("TOPIC: ITALY");
                        class3.Add("-------------------------------");
                    }
                    class3.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 40 && i > 29)
                {
                    if (i == 30)
                    {
                        class4.Add("-------------------------------");
                        class4.Add("TOPIC: FOOD");
                        class4.Add("-------------------------------");
                    }
                    class4.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 50 && i > 39)
                {
                    if (i == 40)
                    {
                        class5.Add("-------------------------------");
                        class5.Add("TOPIC: FASHION");
                        class5.Add("-------------------------------");
                    }
                    class5.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 60 && i > 49)
                {
                    if (i == 50)
                    {
                        class6.Add("-------------------------------");
                        class6.Add("TOPIC: FOOTBALL");
                        class6.Add("-------------------------------");
                    }
                    class6.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i < 140 && i > 59)
                {
                    if (i == 60)
                    {
                        class7.Add("-------------------------------");
                        class7.Add("TOPIC: OTHER");
                        class7.Add("-------------------------------");
                    }
                    class7.Add("Training_Tweet:\t" + documents_Train[i]);
                }
                if (i >= 140)
                {
                    int what;
                    what = outputValues[i - 140].IndexOf(outputValues[i - 140].Max());
                    switch (what)
                    {
                    case 0:
                        class1.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 1:
                        class2.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 2:
                        class3.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 3:
                        class4.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 4:
                        class5.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 5:
                        class6.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;

                    case 6:
                        class7.Add("Test_Tweet:\t" + documents_Train[i]);
                        break;
                    }
                }
            }

            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class1);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class2);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class3);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class4);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class5);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class6);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");
            outputLines.AddRange(class7);
            outputLines.Add("");
            outputLines.Add("");
            outputLines.Add("");


            System.IO.File.WriteAllLines(@"Train_NN_With_Test_2.txt", outputLines.ToArray());

            Console.Write("Press any key to quit ..");
#endif

            Console.ReadKey();
        }
Ejemplo n.º 25
0
        public static void test()
        {
            //double[][] inputs;
            //double[][] outputs;
            //double[][] testInputs;
            //double[][] testOutputs;

            //// Load ascii digits dataset.
            //inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            //// The first 500 data rows will be for training. The rest will be for testing.
            //testInputs = inputs.Skip(500).ToArray();
            //testOutputs = outputs.Skip(500).ToArray();
            //inputs = inputs.Take(500).ToArray();
            //outputs = outputs.Take(500).ToArray();
            //double[][] inputs = new double[4][] {
            //    new double[] {0, 0}, new double[] {0, 1},
            //    new double[] {1, 0}, new double[] {1, 1}
            //};
            //double[][] outputs = new double[4][] {
            //    new double[] {1, 0}, new double[] {0, 1},
            //    new double[] {0, 1}, new double[] {1, 0}
            //};

            double[][] inputs =
            {
                //               input         output
                new double[] { 0, 1, 1, 0 }, //  0
                new double[] { 0, 1, 0, 0 }, //  0
                new double[] { 0, 0, 1, 0 }, //  0
                new double[] { 0, 1, 1, 0 }, //  0
                new double[] { 0, 1, 0, 0 }, //  0
                new double[] { 1, 0, 0, 0 }, //  1
                new double[] { 1, 0, 0, 0 }, //  1
                new double[] { 1, 0, 0, 1 }, //  1
                new double[] { 0, 0, 0, 1 }, //  1
                new double[] { 0, 0, 0, 1 }, //  1
                new double[] { 1, 1, 1, 1 }, //  2
                new double[] { 1, 0, 1, 1 }, //  2
                new double[] { 1, 1, 0, 1 }, //  2
                new double[] { 0, 1, 1, 1 }, //  2
                new double[] { 1, 1, 1, 1 }, //  2
            };

            double[][] outputs = // those are the class labels
            {
                new double[] { 1, 0, 0 },
                new double[] { 1, 0, 0 },
                new double[] { 1, 0, 0 },
                new double[] { 1, 0, 0 },
                new double[] { 1, 0, 0 },
                new double[] { 0, 1, 0 },
                new double[] { 0, 1, 0 },
                new double[] { 0, 1, 0 },
                new double[] { 0, 1, 0 },
                new double[] { 0, 1, 0 },
                new double[] { 0, 0, 1 },
                new double[] { 0, 0, 1 },
                new double[] { 0, 0, 1 },
                new double[] { 0, 0, 1 },
                new double[] { 0, 0, 1 },
            };


            // Setup the deep belief network and initialize with random weights.
            Console.WriteLine(inputs.First().Length);
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 2, outputs.First().Length);

            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();

            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum     = 0.5,
                    Decay        = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);

            // Create mini-batches to speed learning.
            int[]        groups  = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData          = teacher.GetLayerInput(batches);
                for (int i = 0; i < 50000; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    //if (i % 10 == 0)
                    //{
                    //    Console.WriteLine(i + ", Error = " + error);
                    //}
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new Accord.Neuro.Learning.BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum     = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 50000; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                //if (i % 10 == 0)
                //{
                //    Console.WriteLine(i + ", Error = " + error);
                //}
            }

            // Test the resulting accuracy.
            //int correct = 0;
            //for (int i = 0; i < inputs.Length; i++)
            //{
            //    double[] outputValues = network.Compute(testInputs[i]);
            //    if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
            //    {
            //        correct++;
            //    }
            //}

            //Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");

            //double[] probs = network.GenerateOutput(new double[] { 0, 0 });
            //foreach (double p in probs)
            //{
            //    Console.Write(p + ", ");
            //}
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] output = network.Compute(inputs[i]);
                int      imax; output.Max(out imax);
                Console.Write(imax + " -- ");
                foreach (double p in output)
                {
                    Console.Write(p + ", ");
                }
                Console.WriteLine("\n------------------");
            }
        }