Ejemplo n.º 1
0
 /// <summary>
 /// Save all render targets to .dds files (uses the render target DebugName for filename)
 /// </summary>
 public void SaveToFiles()
 {
     foreach (var rt in RTs)
     {
         CopyTexture.SaveToFile(DeviceManager, rt, rt.DebugName + ".dds");
     }
 }
Ejemplo n.º 2
0
        /// <summary>
        /// Tries to find an existing texture, or create a new one if not found.
        /// </summary>
        /// <param name="copyTexture">Copy texture to find or create</param>
        /// <param name="preferScaling">Indicates if the texture should be scaled from the start</param>
        /// <returns>The texture</returns>
        public Texture FindOrCreateTexture(CopyTexture copyTexture, bool preferScaling = true)
        {
            ulong address = _context.MemoryManager.Translate(copyTexture.Address.Pack());

            if (address == MemoryManager.BadAddress)
            {
                return(null);
            }

            int gobBlocksInY = copyTexture.MemoryLayout.UnpackGobBlocksInY();
            int gobBlocksInZ = copyTexture.MemoryLayout.UnpackGobBlocksInZ();

            FormatInfo formatInfo = copyTexture.Format.Convert();

            int width;

            if (copyTexture.LinearLayout)
            {
                width = copyTexture.Stride / formatInfo.BytesPerPixel;
            }
            else
            {
                width = copyTexture.Width;
            }

            TextureInfo info = new TextureInfo(
                address,
                width,
                copyTexture.Height,
                copyTexture.Depth,
                1,
                1,
                1,
                copyTexture.Stride,
                copyTexture.LinearLayout,
                gobBlocksInY,
                gobBlocksInZ,
                1,
                Target.Texture2D,
                formatInfo);

            TextureSearchFlags flags = TextureSearchFlags.ForCopy;

            if (preferScaling)
            {
                flags |= TextureSearchFlags.WithUpscale;
            }

            Texture texture = FindOrCreateTexture(info, flags);

            texture.SynchronizeMemory();

            return(texture);
        }
Ejemplo n.º 3
0
    void Awake()
    {
        RectTrans    = GetComponent <RectTransform>();
        Image        = GetComponentInChildren <RawImage>();
        Copy         = GetComponentInChildren <CopyTexture>();
        Copy.enabled = true;

        //StartCoroutine( UpdateTexture() );

        UpdateTriggerSize();
    }
Ejemplo n.º 4
0
        /// <summary>
        /// Tries to find an existing texture, or create a new one if not found.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the texture is mapped</param>
        /// <param name="copyTexture">Copy texture to find or create</param>
        /// <param name="offset">Offset to be added to the physical texture address</param>
        /// <param name="formatInfo">Format information of the copy texture</param>
        /// <param name="preferScaling">Indicates if the texture should be scaled from the start</param>
        /// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
        /// <returns>The texture</returns>
        public Texture FindOrCreateTexture(
            MemoryManager memoryManager,
            CopyTexture copyTexture,
            ulong offset,
            FormatInfo formatInfo,
            bool preferScaling = true,
            Size?sizeHint      = null)
        {
            int gobBlocksInY = copyTexture.MemoryLayout.UnpackGobBlocksInY();
            int gobBlocksInZ = copyTexture.MemoryLayout.UnpackGobBlocksInZ();

            int width;

            if (copyTexture.LinearLayout)
            {
                width = copyTexture.Stride / formatInfo.BytesPerPixel;
            }
            else
            {
                width = copyTexture.Width;
            }

            TextureInfo info = new TextureInfo(
                copyTexture.Address.Pack() + offset,
                width,
                copyTexture.Height,
                copyTexture.Depth,
                1,
                1,
                1,
                copyTexture.Stride,
                copyTexture.LinearLayout,
                gobBlocksInY,
                gobBlocksInZ,
                1,
                Target.Texture2D,
                formatInfo);

            TextureSearchFlags flags = TextureSearchFlags.ForCopy;

            if (preferScaling)
            {
                flags |= TextureSearchFlags.WithUpscale;
            }

            Texture texture = FindOrCreateTexture(memoryManager, flags, info, 0, sizeHint);

            texture?.SynchronizeMemory();

            return(texture);
        }
Ejemplo n.º 5
0
        public override void Run()
        {
            GBuffer gbuffer = ToDispose(new GBuffer(this.RenderTargetSize.Width,
                this.RenderTargetSize.Height,
                new SampleDescription(1, 0),
                Format.R8G8B8A8_UNorm,
                Format.R32_UInt,
                Format.R8G8B8A8_UNorm));
            gbuffer.Initialize(this);

            GBuffer gbufferMS = ToDispose(new GBuffer(this.RenderTargetSize.Width,
                this.RenderTargetSize.Height,
                new SampleDescription(4, 0),
                Format.R8G8B8A8_UNorm,
                Format.R32_UInt,
                Format.R8G8B8A8_UNorm));
            gbufferMS.Initialize(this);

            ScreenAlignedQuadRenderer saQuad = ToDispose(new ScreenAlignedQuadRenderer());
            saQuad.Initialize(this);

            #region Create renderers

            // Note: the renderers take care of creating their own
            // device resources and listen for DeviceManager.OnInitialize

            // Create Light accumulator
            var sphereMesh = Common.Mesh.LoadFromFile("Sphere.cmo").FirstOrDefault();
            //var coneMesh = Common.Mesh.LoadFromFile("Cone.cmo").FirstOrDefault();

            var sphereRenderer = ToDispose(new MeshRenderer(sphereMesh));
            sphereRenderer.Initialize(this);
            //var coneRenderer = new MeshRenderer(coneMesh);
            //coneRenderer.Initialize(this);
            var lightRenderer = ToDispose(new LightRenderer(sphereRenderer, saQuad, gbuffer));
            var lightRendererMS = ToDispose(new LightRenderer(sphereRenderer, saQuad, gbufferMS));

            lightRenderer.Lights.Add(new PerLight
            {
                Color = new Color4(0.2f, 0.2f, 0.2f, 1.0f),
                Position = new Vector3(1, 1, 1),
                Direction = new Vector3(0, 0, 1),
                Range = 10,
                Type = LightType.Ambient
            });
            //lightRenderer.Lights.Add(new PerLight
            //{
            //    Color = new Color4(0.2f, 0.2f, 0.2f, 1.0f),
            //    Direction = new Vector3(0, -1, 1),
            //    Type = LightType.Directional
            //});

            lightRenderer.Lights.Add(new PerLight
            {
                Color = Color.LightPink,
                Position = new Vector3(22.4f, 2.6f, -8.98f),
                Range = 20,
                Type = LightType.Point
            });
            lightRenderer.Lights.Add(new PerLight
            {
                Color = new Color4(1.0f, 1.0f, 1.0f, 1.0f),
                Position = new Vector3(0, 10, 1),
                Range = 10,
                Type = LightType.Point
            });
            var aLight = new PerLight
            {
                Color = new Color4(1.0f, 0.0f, 0.0f, 1.0f),
                Position = new Vector3(9.86f, 10.92f, -6.74f),
                Range = 20,
                Type = LightType.Point
            };
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Blue;
            aLight.Position.X = 2.32f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.LightYellow;
            aLight.Position.X = -1.0f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Cyan;
            aLight.Position.X = -5.11f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Lime;
            aLight.Position.X = -8.33f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.AliceBlue;
            aLight.Position.X = -12.55f;
            lightRenderer.Lights.Add(aLight);

            aLight.Position.Z = 5.02f;

            aLight.Color = Color.Red;
            aLight.Position.X = 9.86f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Blue;
            aLight.Position.X = 2.32f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.LightYellow;
            aLight.Position.X = -1.0f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Cyan;
            aLight.Position.X = -5.11f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.Lime;
            aLight.Position.X = -8.33f;
            lightRenderer.Lights.Add(aLight);
            aLight.Color = Color.AliceBlue;
            aLight.Position.X = -12.55f;
            lightRenderer.Lights.Add(aLight);

            //lightRenderer.Lights.Add(new PerLight
            //{
            //    Color = new Color4(1.0f, 1.0f, 1.0f, 1.0f),
            //    Position = new Vector3(-2, 1, 2),
            //    Direction = new Vector3(0, -1, 0),
            //    Range = 2f,
            //    Type = LightType.Spot,
            //    SpotInnerCosine = (float)Math.Cos(0.4) / 2.0f,
            //    SpotOuterCosine = (float)Math.Cos(1) / 2.0f,
            //});
            lightRenderer.Initialize(this);
            lightRendererMS.Lights.AddRange(lightRenderer.Lights);
            lightRendererMS.Initialize(this);

            // Create a axis-grid renderer
            var axisGrid = ToDispose(new AxisGridRenderer());
            axisGrid.Initialize(this);

            // Create and initialize the mesh renderer
            var loadedMesh = Common.Mesh.LoadFromFile("Sponza.cmo");
            //var loadedMesh = Common.Mesh.LoadFromFile("Scene.cmo");

            List<MeshRenderer> meshes = new List<MeshRenderer>();
            meshes.AddRange((from mesh in loadedMesh
                             select ToDispose(new MeshRenderer(mesh))));

            meshes.ForEach(m => m.Initialize(this));
            var meshWorld = Matrix.Identity;

            // Set the first animation as the current animation and start clock
            meshes.ForEach(m => {
                if (m.Mesh.Animations != null && m.Mesh.Animations.Any())
                    m.CurrentAnimation = m.Mesh.Animations.First().Value;
                m.Clock.Start();
            });

            // Create and initialize a Direct2D FPS text renderer
            var fps = ToDispose(new Common.FpsRenderer("Calibri", Color.CornflowerBlue, new Point(8, 8), 16));
            fps.Initialize(this);

            // Create and initialize a general purpose Direct2D text renderer
            // This will display some instructions and the current view and rotation offsets
            var textRenderer = ToDispose(new Common.TextRenderer("Calibri", Color.CornflowerBlue, new Point(8, 40), 12));
            textRenderer.Initialize(this);

            #endregion

            // Initialize the world matrix
            var worldMatrix = Matrix.Identity;

            // Set the camera position slightly behind (z)
            var cameraPosition = new Vector3(15, 15, -1);
            var cameraTarget = new Vector3(-15, 5, -1); // Looking at the origin 0,0,0
            var cameraUp = Vector3.UnitY; // Y+ is Up

            // Prepare matrices
            // Create the view matrix from our camera position, look target and up direction
            var viewMatrix = Matrix.LookAtRH(cameraPosition, cameraTarget, cameraUp);
            viewMatrix.TranslationVector += new Vector3(0, -0.98f, 0);

            // Create the projection matrix
            /* FoV 60degrees = Pi/3 radians */
            // Aspect ratio (based on window size), Near clip, Far clip
            var projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 2f, 100f);

            // Maintain the correct aspect ratio on resize
            Window.Resize += (s, e) =>
            {
                projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 2f, 100f);
            };

            #region Rotation and window event handlers

            // Create a rotation vector to keep track of the rotation
            // around each of the axes
            var rotation = new Vector3(0.0f, 0.0f, 0.0f);

            var gbufferIndex = -1;

            Dictionary<Keys, bool> keyToggles = new Dictionary<Keys, bool>();
            keyToggles[Keys.Z] = false;
            keyToggles[Keys.F] = false;
            keyToggles[Keys.M] = false;
            keyToggles[Keys.PrintScreen] = false;

            // We will call this action to update text
            // for the text renderer
            Action updateText = () =>
            {
                textRenderer.Text =
                    String.Format(
                    "{0} (+/- to change)"+
                    "\n{1} (M to toggle)",
                    gbufferIndex > -1 ? DebugGBuffer[gbufferIndex].DebugName : gbufferIndex < -1 ? "Forward Render (1 light)" : "Deferred with 15 lights",
                    gbufferIndex == -2 || keyToggles[Keys.M] ? "Multisampled" : "No anti-aliasing"
                    );
            };

            // Support keyboard/mouse input to rotate or move camera view
            var moveFactor = 0.02f; // how much to change on each keypress
            var shiftKey = false;
            var ctrlKey = false;
            var background = Color.White;
            var showNormals = false;
            var enableNormalMap = true;
            Window.KeyDown += (s, e) =>
            {
                var context = DeviceManager.Direct3DContext;

                shiftKey = e.Shift;
                ctrlKey = e.Control;

                switch (e.KeyCode)
                {
                    case Keys.Add:
                        gbufferIndex++;

                        if (gbufferIndex >= DebugGBuffer.Count)
                            gbufferIndex = -2;
                        break;
                    case Keys.Subtract:
                        gbufferIndex--;

                        if (gbufferIndex < -2)
                            gbufferIndex = DebugGBuffer.Count - 1;
                        break;
                    // WASD -> pans view
                    case Keys.A:
                        viewMatrix.TranslationVector += new Vector3(moveFactor * 12, 0f, 0f);
                        break;
                    case Keys.D:
                        viewMatrix.TranslationVector -= new Vector3(moveFactor * 12, 0f, 0f);
                        break;
                    case Keys.S:
                        if (shiftKey)
                            viewMatrix.TranslationVector += new Vector3(0f, moveFactor * 12, 0f);
                        else
                            viewMatrix.TranslationVector -= new Vector3(0f, 0f, 1) * moveFactor * 12;
                        break;
                    case Keys.W:
                        if (shiftKey)
                            viewMatrix.TranslationVector -= new Vector3(0f, moveFactor * 12, 0f);
                        else
                            viewMatrix.TranslationVector += new Vector3(0f, 0f, 1) * moveFactor * 12;
                        break;
                    // Up/Down and Left/Right - rotates around X / Y respectively
                    // (Mouse wheel rotates around Z)
                    case Keys.Down:
                        worldMatrix *= Matrix.RotationX(moveFactor);
                        rotation += new Vector3(moveFactor, 0f, 0f);
                        break;
                    case Keys.Up:
                        worldMatrix *= Matrix.RotationX(-moveFactor);
                        rotation -= new Vector3(moveFactor, 0f, 0f);
                        break;
                    case Keys.Left:
                        worldMatrix *= Matrix.RotationY(moveFactor);
                        rotation += new Vector3(0f, moveFactor, 0f);
                        break;
                    case Keys.Right:
                        worldMatrix *= Matrix.RotationY(-moveFactor);
                        rotation -= new Vector3(0f, moveFactor, 0f);
                        break;
                    case Keys.T:
                        fps.Show = !fps.Show;
                        textRenderer.Show = !textRenderer.Show;
                        break;
                    case Keys.B:
                        if (background == Color.White)
                        {
                            background = new Color(30, 30, 34);
                        }
                        else
                        {
                            background = Color.White;
                        }
                        break;
                    case Keys.G:
                        axisGrid.Show = !axisGrid.Show;
                        break;
                    case Keys.P:
                        // Pause or resume mesh animation
                        meshes.ForEach(m => {
                            if (m.Clock.IsRunning)
                                m.Clock.Stop();
                            else
                                m.Clock.Start();
                        });
                        break;
                    case Keys.X:
                        // To test for correct resource recreation
                        // Simulate device reset or lost.
                        System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects());
                        DeviceManager.Initialize(DeviceManager.Dpi);
                        System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects());
                        break;
                    case Keys.Z:
                        keyToggles[Keys.Z] = !keyToggles[Keys.Z];
                        if (keyToggles[Keys.Z])
                        {
                            context.PixelShader.Set(depthPixelShader);
                        }
                        else
                        {
                            context.PixelShader.Set(pixelShader);
                        }
                        break;
                    case Keys.F:
                        keyToggles[Keys.F] = !keyToggles[Keys.F];
                        RasterizerStateDescription rasterDesc;
                        if (context.Rasterizer.State != null)
                            rasterDesc = context.Rasterizer.State.Description;
                        else
                            rasterDesc = new RasterizerStateDescription()
                            {
                                CullMode = CullMode.Back,
                                FillMode = FillMode.Solid
                            };
                        if (keyToggles[Keys.F])
                        {
                            rasterDesc.FillMode = FillMode.Wireframe;
                            context.Rasterizer.State = ToDispose(new RasterizerState(context.Device, rasterDesc));
                        }
                        else
                        {
                            rasterDesc.FillMode = FillMode.Solid;
                            context.Rasterizer.State = ToDispose(new RasterizerState(context.Device, rasterDesc));
                        }
                        break;
                    case Keys.M:
                        keyToggles[Keys.M] = !keyToggles[Keys.M];
                        break;
                    case Keys.N:
                        if (!shiftKey)
                            showNormals = !showNormals;
                        else
                            enableNormalMap = !enableNormalMap;

                        break;
                    case Keys.D1:
                        context.PixelShader.Set(pixelShader);
                        break;
                    //case Keys.D2:
                    //    context.PixelShader.Set(lambertShader);
                    //    break;
                    //case Keys.D3:
                    //    context.PixelShader.Set(phongShader);
                    //    break;
                    case Keys.D4:
                        context.PixelShader.Set(blinnPhongShader);
                        break;
                    case Keys.Insert:
                        keyToggles[Keys.PrintScreen] = true;
                        break;

                }

                updateText();
            };
            Window.KeyUp += (s, e) =>
            {
                // Clear the shift/ctrl keys so they aren't sticky
                if (e.KeyCode == Keys.ShiftKey)
                    shiftKey = false;
                if (e.KeyCode == Keys.ControlKey)
                    ctrlKey = false;
            };
            Window.MouseWheel += (s, e) =>
            {
                if (shiftKey)
                {
                    // Zoom in/out
                    viewMatrix.TranslationVector += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor * 2);
                }
                else
                {
                    // rotate around Z-axis
                    viewMatrix *= Matrix.RotationZ((e.Delta / 120f) * moveFactor);
                    rotation += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor);
                }
                updateText();
            };

            var lastX = 0;
            var lastY = 0;

            Window.MouseDown += (s, e) =>
            {
                if (e.Button == MouseButtons.Left)
                {
                    lastX = e.X;
                    lastY = e.Y;
                }
            };

            Window.MouseMove += (s, e) =>
            {
                if (e.Button == MouseButtons.Left)
                {
                    var yRotate = lastX - e.X;
                    var xRotate = lastY - e.Y;
                    lastY = e.Y;
                    lastX = e.X;

                    // Mouse move changes
                    viewMatrix *= Matrix.RotationX(-xRotate * moveFactor);
                    viewMatrix *= Matrix.RotationY(-yRotate * moveFactor);

                    updateText();
                }
            };

            // Display instructions with initial values
            updateText();

            #endregion

            var clock = new System.Diagnostics.Stopwatch();
            clock.Start();

            #region Render loop

            // Create and run the render loop
            RenderLoop.Run(Window, () =>
            {
                // Start of frame:

                // Retrieve immediate context
                var context = DeviceManager.Direct3DContext;

                // Clear depth stencil view
                context.ClearDepthStencilView(DepthStencilView, DepthStencilClearFlags.Depth | DepthStencilClearFlags.Stencil, 1.0f, 0);
                // Clear render target view
                context.ClearRenderTargetView(RenderTargetView, background);

                // Create viewProjection matrix
                var viewProjection = Matrix.Multiply(viewMatrix, projectionMatrix);

                var boundingFrustum = new BoundingFrustum(viewProjection);

                // Extract camera position from view
                var camPosition = Matrix.Transpose(Matrix.Invert(viewMatrix)).Column4;
                cameraPosition = new Vector3(camPosition.X, camPosition.Y, camPosition.Z);

                // If Keys.CtrlKey is down, auto rotate viewProjection based on time
                var time = clock.ElapsedMilliseconds / 1000.0f;

                var perFrame = new ConstantBuffers.PerFrame();
                perFrame.Light.Color = new Color(0.8f, 0.8f, 0.8f, 1.0f);
                var lightDir = Vector3.Transform(new Vector3(1f, -1f, -1f), worldMatrix);
                perFrame.Light.Direction = new Vector3(lightDir.X, lightDir.Y, lightDir.Z);// new Vector3(Vector3.Transform(new Vector3(1f, -1f, 1f), worldMatrix * Matrix.RotationAxis(Vector3.UnitY, time)).ToArray().Take(3).ToArray());

                perFrame.CameraPosition = cameraPosition;
                context.UpdateSubresource(ref perFrame, perFrameBuffer);

                // Render each object

                var perMaterial = new ConstantBuffers.PerMaterial();
                perMaterial.Ambient = new Color4(0.2f);
                perMaterial.Diffuse = Color.White;
                perMaterial.Emissive = new Color4(0);
                perMaterial.Specular = Color.White;
                perMaterial.SpecularPower = 20f;
                perMaterial.UVTransform = Matrix.Identity;
                context.UpdateSubresource(ref perMaterial, perMaterialBuffer);

                if (showNormals)
                    context.GeometryShader.Set(debugNormals);

                var perObject = new ConstantBuffers.PerObject();

                // MESH

                // Provide the material constant buffer to the mesh renderer
                context.VertexShader.Set(vertexShader);
                context.PixelShader.Set(blinnPhongShader);

                int drawn = 0;

                if (gbufferIndex == -2)
                {
                    // Regular forward rendering
                    meshes.ForEach((m) =>
                    {
                        perObject.World = m.World * worldMatrix;

                        var center = Vector3.Transform(m.Mesh.Extent.Center, perObject.World);
                        var offset = new Vector3(center.X, center.Y, center.Z) - m.Mesh.Extent.Center;
                        var cullCheck = boundingFrustum.Contains(new BoundingBox(m.Mesh.Extent.Min + offset, m.Mesh.Extent.Max + offset));
                        if (cullCheck == ContainmentType.Intersects || cullCheck == ContainmentType.Contains)
                        {
                            perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World));
                            perObject.WorldViewProjection = perObject.World * viewProjection;
                            perObject.ViewProjection = viewProjection;
                            perObject.Transpose();
                            context.UpdateSubresource(ref perObject, perObjectBuffer);

                            m.EnableNormalMap = enableNormalMap;
                            m.PerMaterialBuffer = perMaterialBuffer;
                            m.PerArmatureBuffer = perArmatureBuffer;
                            m.Render();
                            drawn++;
                        }
                    });
                }
                else
                {
                    GBuffer activeGBuffer = gbuffer;
                    LightRenderer activeLightRenderer = lightRenderer;
                    if (keyToggles[Keys.M])
                    {
                        activeGBuffer = gbufferMS;
                        activeLightRenderer = lightRendererMS;
                    }

                    // Deferred rendering
                    context.VertexShader.Set(fillGBufferVS);
                    context.PixelShader.Set(fillGBufferPS);
                    activeGBuffer.Clear(context, new Color(0, 0, 0, 0));
                    activeGBuffer.Bind(context);

                    meshes.ForEach((m) =>
                    {
                        perObject.World = m.World * worldMatrix;

                        //var center = Vector3.Transform(m.Mesh.Extent.Center, perObject.World);
                        //var offset = new Vector3(center.X, center.Y, center.Z) - m.Mesh.Extent.Center;
                        //var cullCheck = boundingFrustum.Contains(new BoundingBox(m.Mesh.Extent.Min + offset, m.Mesh.Extent.Max + offset));
                        //if (cullCheck == ContainmentType.Intersects || cullCheck == ContainmentType.Contains)
                        {
                            perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World));
                            perObject.WorldViewProjection = perObject.World * viewProjection;
                            perObject.ViewProjection = viewProjection;
                            perObject.View = viewMatrix;
                            perObject.Projection = projectionMatrix;
                            perObject.InverseView = Matrix.Invert(viewMatrix);
                            perObject.InverseProjection = Matrix.Invert(projectionMatrix);
                            perObject.Transpose();
                            context.UpdateSubresource(ref perObject, perObjectBuffer);

                            m.EnableNormalMap = enableNormalMap;
                            m.PerMaterialBuffer = perMaterialBuffer;
                            m.PerArmatureBuffer = perArmatureBuffer;
                            m.Render();
                            drawn++;
                        }
                    });
                    activeGBuffer.Unbind(context);

                    if (gbufferIndex == -1)
                    {
                        // Light pass
                        sphereRenderer.PerMaterialBuffer = perMaterialBuffer;
                        sphereRenderer.PerArmatureBuffer = perArmatureBuffer;
                        //coneRenderer.PerMaterialBuffer = perMaterialBuffer;
                        //coneRenderer.PerArmatureBuffer = perArmatureBuffer;

                        context.PixelShader.SetConstantBuffer(0, perObjectBuffer);

                        perObject.ViewProjection = viewProjection;
                        perObject.View = viewMatrix;
                        perObject.Projection = projectionMatrix;
                        perObject.InverseView = Matrix.Invert(viewMatrix);
                        perObject.InverseProjection = Matrix.Invert(projectionMatrix);

                        activeLightRenderer.Debug = gbufferIndex;
                        activeLightRenderer.Clear(context);
                        activeLightRenderer.Frustum = new BoundingFrustum(projectionMatrix);
                        activeLightRenderer.PerObject = perObject;
                        activeLightRenderer.PerObjectBuffer = perObjectBuffer;
                        activeLightRenderer.Bind(context);
                        activeLightRenderer.Render();
                        activeLightRenderer.Unbind(context);
                        context.OutputMerger.SetRenderTargets(this.DepthStencilView, this.RenderTargetView);

                        // Render the light buffer
                        saQuad.Shader = null; // use default shader
                        saQuad.ShaderResources = new[] { activeLightRenderer.SRV };
                        saQuad.Render();
                        // reset shader resources
                        saQuad.ShaderResources = null;
                    }
                    else
                    {
                        // Bind the output render targets
                        context.OutputMerger.SetRenderTargets(this.DepthStencilView, this.RenderTargetView);

                        // Render debug shaders
                        saQuad.ShaderResources = activeGBuffer.SRVs.ToArray().Concat(new[] { activeGBuffer.DSSRV }).ToArray();
                        perObject.World = worldMatrix;
                        perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World));
                        perObject.WorldViewProjection = perObject.World * viewProjection;
                        perObject.ViewProjection = viewProjection;
                        perObject.View = viewMatrix;
                        perObject.InverseView = Matrix.Invert(viewMatrix);
                        perObject.Projection = projectionMatrix;
                        perObject.InverseProjection = Matrix.Invert(projectionMatrix);
                        perObject.Transpose();
                        context.UpdateSubresource(ref perObject, perObjectBuffer);

                        context.PixelShader.SetConstantBuffer(0, perObjectBuffer);
                        if (keyToggles[Keys.M])
                            saQuad.Shader = DebugGBufferMS[gbufferIndex];
                        else
                            saQuad.Shader = DebugGBuffer[gbufferIndex];
                        saQuad.Render();
                    }
                }

                // Render FPS
                fps.Render();

                // Render instructions + position changes
                textRenderer.Render();

                if (keyToggles[Keys.PrintScreen])
                {
                    keyToggles[Keys.PrintScreen] = false;

                    //using (var resource = this.RenderTargetView.ResourceAs<Texture2D>())
                    //using (var bm = CopyTexture.SaveToBitmap(DeviceManager, resource))
                    //{
                    //    bm.Save("RT0.png");
                    //}

                    CopyTexture.SaveToFile(DeviceManager, lightRenderer.SRV.ResourceAs<Texture2D>(), "test.dds");

                    gbuffer.SaveToFiles();

                    //using (var resource = this.RenderTargetView.ResourceAs<Texture2D>())
                    //using (var bm0 = CopyTexture.SaveToWICBitmap(DeviceManager, resource))
                    //using (var bm1 = CopyTexture.SaveToWICBitmap(DeviceManager, gbuffer.RT1))
                    //using (var bm2 = CopyTexture.SaveToWICBitmap(DeviceManager, gbuffer.RT2))
                    //using (var bm3 = CopyTexture.SaveToWICBitmap(DeviceManager, gbuffer.DS0))
                    //using (var bm4 = CopyTexture.SaveToWICBitmap(DeviceManager, this.DepthBuffer))
                    //{
                        //CopyTexture.SaveToFile(DeviceManager, gbuffer.RT0, "RT0.dds");

                        //CopyTexture.SaveToFile(DeviceManager, resource, "test.dds");
                        //CopyTexture.SaveToFile(DeviceManager, this.DepthBuffer, "DepthBuffer.png", SharpDX.DXGI.Format.R32_Float);
                        //if (bm0 != null)
                        //    CopyTexture.SaveBitmap(DeviceManager, bm0, "RT0.png");
                        //if (bm1 != null)
                        //    CopyTexture.SaveBitmap(DeviceManager, bm1, "RT1.png");
                        //if (bm2 != null)
                        //    CopyTexture.SaveBitmap(DeviceManager, bm2, "RT2.png");
                        //if (bm3 != null)
                        //    CopyTexture.SaveBitmap(DeviceManager, bm3, "DS0.png");
                        //if (bm4 != null)
                        //    CopyTexture.SaveBitmap(DeviceManager, bm3, "DepthBuffer.png");
                    //}
                }

                // Present the frame
                Present();
            });
            #endregion
        }
        public override void Run()
        {
            #region Create renderers

            // Note: the renderers take care of creating their own
            // device resources and listen for DeviceManager.OnInitialize

            #region Initialize MeshRenderer instances

            // Create and initialize the mesh renderer
            var loadedMesh             = Common.Mesh.LoadFromFile("Scene.cmo");
            List <MeshRenderer> meshes = new List <MeshRenderer>();
            meshes.AddRange((from mesh in loadedMesh
                             select ToDispose(new MeshRenderer(mesh))));

            // We will support a envmap for each mesh that contains "reflector" in its name
            List <DualParaboloidMap> envMaps = new List <DualParaboloidMap>();

            // We will rotate any meshes that contains "rotate" in its name
            List <MeshRenderer> rotateMeshes = new List <MeshRenderer>();

            // We will generate meshRows * meshColumns of any mesh that contains "replicate" in its name
            int meshRows    = 10;
            int meshColumns = 10;

            // Define an action to initialize our meshes so that we can
            // dynamically change the number of reflective surfaces and
            // replicated meshes
            Action createMeshes = () =>
            {
                // Clear context states, ensures we don't have
                // any of the resources we are going to release
                // assigned to the pipeline.
                DeviceManager.Direct3DContext.ClearState();
                if (contextList != null)
                {
                    foreach (var context in contextList)
                    {
                        context.ClearState();
                    }
                }

                // Remove meshes
                foreach (var mesh in meshes)
                {
                    mesh.Dispose();
                }
                meshes.Clear();

                // Remove environment maps
                foreach (var envMap in envMaps)
                {
                    envMap.Dispose();
                }
                envMaps.Clear();

                // Create non-replicated MeshRenderer instances
                meshes.AddRange(from mesh in loadedMesh
                                where !((mesh.Name ?? "").ToLower().Contains("replicate"))
                                select ToDispose(new MeshRenderer(mesh)));

                #region Create replicated meshes
                // Add the same mesh multiple times, separate by the combined extent
                var replicatedMeshes = (from mesh in loadedMesh
                                        where (mesh.Name ?? "").ToLower().Contains("replicate")
                                        select mesh).ToArray();
                if (replicatedMeshes.Length > 0)
                {
                    var minExtent = (from mesh in replicatedMeshes
                                     orderby new { mesh.Extent.Min.X, mesh.Extent.Min.Z }
                                     select mesh.Extent).First();
                    var maxExtent = (from mesh in replicatedMeshes
                                     orderby new { mesh.Extent.Max.X, mesh.Extent.Max.Z } descending
                                     select mesh.Extent).First();
                    var extentDiff = (maxExtent.Max - minExtent.Min);

                    for (int x = -(meshColumns / 2); x < (meshColumns / 2); x++)
                    {
                        for (int z = -(meshRows / 2); z < (meshRows / 2); z++)
                        {
                            var meshGroup = (from mesh in replicatedMeshes
                                             where (mesh.Name ?? "").ToLower().Contains("replicate")
                                             select ToDispose(new MeshRenderer(mesh))).ToList();

                            // Reposition based on width/depth of combined extent
                            foreach (var m in meshGroup)
                            {
                                m.World.TranslationVector = new Vector3(m.Mesh.Extent.Center.X + extentDiff.X * x, m.Mesh.Extent.Min.Y, m.Mesh.Extent.Center.Z + extentDiff.Z * z);
                            }

                            meshes.AddRange(meshGroup);
                        }
                    }
                }
                #endregion

                #region Create reflective meshes
                // Create reflections where necessary and add rotation meshes
                int reflectorCount = 0;
                meshes.ForEach(m =>
                {
                    var name = (m.Mesh.Name ?? "").ToLower();
                    if (name.Contains("reflector") && reflectorCount < maxReflectors)
                    {
                        reflectorCount++;
                        var envMap       = ToDispose(new DualParaboloidMap(512));
                        envMap.Reflector = m;
                        envMap.Initialize(this);
                        m.EnvironmentMap = envMap;
                        envMaps.Add(envMap);
                    }
                    if (name.Contains("rotate"))
                    {
                        rotateMeshes.Add(m);
                    }

                    m.Initialize(this);
                });
                #endregion

                // Initialize each mesh
                meshes.ForEach(m => m.Initialize(this));
            };
            createMeshes();

            // Set the first animation as the current animation and start clock
            meshes.ForEach(m =>
            {
                if (m.Mesh.Animations != null && m.Mesh.Animations.Any())
                {
                    m.CurrentAnimation = m.Mesh.Animations.First().Value;
                }
                m.Clock.Start();
            });

            // Create the overall mesh World matrix
            var meshWorld = Matrix.Identity;

            #endregion

            // Create and initialize a Direct2D FPS text renderer
            var fps = ToDispose(new Common.FpsRenderer("Calibri", Color.CornflowerBlue, new Point(8, 8), 16));
            fps.Initialize(this);

            // Create and initialize a general purpose Direct2D text renderer
            // This will display some instructions and the current view and rotation offsets
            var textRenderer = ToDispose(new Common.TextRenderer("Calibri", Color.CornflowerBlue, new Point(8, 40), 12));
            textRenderer.Initialize(this);

            #endregion

            // Initialize the world matrix
            var worldMatrix = Matrix.Identity;

            // Set the camera position slightly behind (z)
            var cameraPosition = new Vector3(0, 1, 2);
            var cameraTarget   = Vector3.Zero;  // Looking at the origin 0,0,0
            var cameraUp       = Vector3.UnitY; // Y+ is Up

            // Prepare matrices
            // Create the view matrix from our camera position, look target and up direction
            var viewMatrix = Matrix.LookAtRH(cameraPosition, cameraTarget, cameraUp);
            viewMatrix.TranslationVector += new Vector3(0, -0.98f, 0);

            // Create the projection matrix
            /* FoV 60degrees = Pi/3 radians */
            // Aspect ratio (based on window size), Near clip, Far clip
            var projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 0.1f, 100f);

            // Maintain the correct aspect ratio on resize
            Window.Resize += (s, e) =>
            {
                projectionMatrix = Matrix.PerspectiveFovRH((float)Math.PI / 3f, Width / (float)Height, 0.1f, 100f);
            };

            #region Rotation and window event handlers

            // Create a rotation vector to keep track of the rotation
            // around each of the axes
            var rotation = new Vector3(0.0f, 0.0f, 0.0f);

            // We will call this action to update text
            // for the text renderer
            Action updateText = () =>
            {
                textRenderer.Text =
                    String.Format(
                        "\nPause rotation: P"
                        + "\nThreads: {0} (+/-)"
                        + "\nReflectors: {1} (Shift-Up/Down)"
                        + "\nCPU load: {2} matrix ops (Shift +/-)"
                        + "\nRotating meshes: {3} (Up/Down, Left/Right)"
                        ,
                        threadCount,
                        maxReflectors,
                        additionalCPULoad,
                        meshRows * meshColumns);
            };

            Dictionary <Keys, bool> keyToggles = new Dictionary <Keys, bool>();
            keyToggles[Keys.Z] = false;
            keyToggles[Keys.F] = false;

            // Support keyboard/mouse input to rotate or move camera view
            var moveFactor = 0.02f; // how much to change on each keypress
            var shiftKey   = false;
            var ctrlKey    = false;
            var background = Color.White;
            Window.KeyDown += (s, e) =>
            {
                var context = DeviceManager.Direct3DContext;

                shiftKey = e.Shift;
                ctrlKey  = e.Control;

                switch (e.KeyCode)
                {
                // WASD -> pans view
                case Keys.A:
                    viewMatrix.TranslationVector += new Vector3(moveFactor * 2, 0f, 0f);
                    break;

                case Keys.D:
                    viewMatrix.TranslationVector -= new Vector3(moveFactor * 2, 0f, 0f);
                    break;

                case Keys.S:
                    if (shiftKey)
                    {
                        viewMatrix.TranslationVector += new Vector3(0f, moveFactor * 2, 0f);
                    }
                    else
                    {
                        viewMatrix.TranslationVector -= new Vector3(0f, 0f, 1) * moveFactor * 2;
                    }
                    break;

                case Keys.W:
                    if (shiftKey)
                    {
                        viewMatrix.TranslationVector -= new Vector3(0f, moveFactor * 2, 0f);
                    }
                    else
                    {
                        viewMatrix.TranslationVector += new Vector3(0f, 0f, 1) * moveFactor * 2;
                    }
                    break;

                // Up/Down and Left/Right - rotates around X / Y respectively
                // (Mouse wheel rotates around Z)
                //case Keys.Down:
                //    worldMatrix *= Matrix.RotationX(moveFactor);
                //    rotation += new Vector3(moveFactor, 0f, 0f);
                //    break;
                //case Keys.Up:
                //    worldMatrix *= Matrix.RotationX(-moveFactor);
                //    rotation -= new Vector3(moveFactor, 0f, 0f);
                //    break;
                //case Keys.Left:
                //    worldMatrix *= Matrix.RotationY(moveFactor);
                //    rotation += new Vector3(0f, moveFactor, 0f);
                //    break;
                //case Keys.Right:
                //    worldMatrix *= Matrix.RotationY(-moveFactor);
                //    rotation -= new Vector3(0f, moveFactor, 0f);
                //    break;
                case Keys.T:
                    fps.Show          = !fps.Show;
                    textRenderer.Show = !textRenderer.Show;
                    break;

                case Keys.B:
                    if (background == Color.White)
                    {
                        background = new Color(30, 30, 34);
                    }
                    else
                    {
                        background = Color.White;
                    }
                    break;

                case Keys.P:
                    // Pause or resume mesh animation
                    meshes.ForEach(m => {
                        if (m.Clock.IsRunning)
                        {
                            m.Clock.Stop();
                        }
                        else
                        {
                            m.Clock.Start();
                        }
                    });
                    break;

                case Keys.X:
                    // To test for correct resource recreation
                    // Simulate device reset or lost.
                    System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects());
                    DeviceManager.Initialize(DeviceManager.Dpi);
                    System.Diagnostics.Debug.WriteLine(SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects());
                    break;

                //case Keys.Z:
                //    keyToggles[Keys.Z] = !keyToggles[Keys.Z];
                //    if (keyToggles[Keys.Z])
                //    {
                //        context.PixelShader.Set(depthPixelShader);
                //    }
                //    else
                //    {
                //        context.PixelShader.Set(pixelShader);
                //    }
                //    break;
                case Keys.F:
                    keyToggles[Keys.F] = !keyToggles[Keys.F];
                    RasterizerStateDescription rasterDesc;
                    if (context.Rasterizer.State != null)
                    {
                        rasterDesc = context.Rasterizer.State.Description;
                    }
                    else
                    {
                        rasterDesc = new RasterizerStateDescription()
                        {
                            CullMode = CullMode.Back,
                            FillMode = FillMode.Solid
                        }
                    };
                    if (keyToggles[Keys.F])
                    {
                        rasterDesc.FillMode = FillMode.Wireframe;
                        rasterizerState     = ToDispose(new RasterizerState(context.Device, rasterDesc));
                    }
                    else
                    {
                        rasterDesc.FillMode = FillMode.Solid;
                        rasterizerState     = ToDispose(new RasterizerState(context.Device, rasterDesc));
                    }
                    break;
                    //case Keys.D1:
                    //    context.PixelShader.Set(pixelShader);
                    //    break;
                    //case Keys.D2:
                    //    context.PixelShader.Set(lambertShader);
                    //    break;
                    //case Keys.D3:
                    //    context.PixelShader.Set(phongShader);
                    //    break;
                    //case Keys.D4:
                    //    context.PixelShader.Set(blinnPhongShader);
                    //    break;
                    //case Keys.D5:
                    //    context.PixelShader.Set(simpleUVShader);
                    //    break;
                    //case Keys.D6:
                    //    context.PixelShader.Set(lambertUVShader);
                    //    break;
                    //case Keys.D7:
                    //    context.PixelShader.Set(phongUVShader);
                    //    break;
                    //case Keys.D8:
                    //    context.PixelShader.Set(blinnPhongUVShader);
                    //    break;
                }

                updateText();
            };
            Window.KeyUp += (s, e) =>
            {
                // Clear the shift/ctrl keys so they aren't sticky
                if (e.KeyCode == Keys.ShiftKey)
                {
                    shiftKey = false;
                }
                if (e.KeyCode == Keys.ControlKey)
                {
                    ctrlKey = false;
                }
            };
            Window.MouseWheel += (s, e) =>
            {
                if (shiftKey)
                {
                    // Zoom in/out
                    viewMatrix.TranslationVector += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor * 2);
                }
                else
                {
                    // rotate around Z-axis
                    viewMatrix *= Matrix.RotationZ((e.Delta / 120f) * moveFactor);
                    rotation   += new Vector3(0f, 0f, (e.Delta / 120f) * moveFactor);
                }
                updateText();
            };

            var lastX = 0;
            var lastY = 0;

            Window.MouseDown += (s, e) =>
            {
                if (e.Button == MouseButtons.Left)
                {
                    lastX = e.X;
                    lastY = e.Y;
                }
            };

            Window.MouseMove += (s, e) =>
            {
                if (e.Button == MouseButtons.Left)
                {
                    var yRotate = lastX - e.X;
                    var xRotate = lastY - e.Y;
                    lastY = e.Y;
                    lastX = e.X;

                    // Mouse move changes
                    // Rotate view (i.e. camera)
                    //viewMatrix *= Matrix.RotationX(-xRotate * moveFactor);
                    //viewMatrix *= Matrix.RotationY(-yRotate * moveFactor);

                    // Rotate around origin
                    var backup = viewMatrix.TranslationVector;
                    viewMatrix.TranslationVector = Vector3.Zero;
                    viewMatrix *= Matrix.RotationX(-xRotate * moveFactor);
                    viewMatrix.TranslationVector = backup;
                    worldMatrix *= Matrix.RotationY(-yRotate * moveFactor);

                    updateText();
                }
            };

            // Display instructions with initial values
            updateText();

            #endregion

            var clock = new System.Diagnostics.Stopwatch();
            clock.Start();

            // Setup the deferred contexts
            SetupContextList();

            #region Render loop

            // Whether or not to reinitialize meshes
            bool initializeMesh = false;

            // Define additional key handlers for controlling the
            // number of threads, reflectors, and replicated meshes
            #region Dynamic Cube map and threading KeyDown handlers
            Window.KeyDown += (s, e) =>
            {
                switch (e.KeyCode)
                {
                case Keys.Up:
                    if (shiftKey)
                    {
                        maxReflectors++;
                    }
                    else
                    {
                        meshRows += 2;
                    }
                    initializeMesh = true;
                    break;

                case Keys.Down:
                    if (shiftKey)
                    {
                        maxReflectors = Math.Max(0, maxReflectors - 1);
                    }
                    else
                    {
                        meshRows = Math.Max(2, meshRows - 2);
                    }
                    initializeMesh = true;
                    break;

                case Keys.Right:
                    meshColumns   += 2;
                    initializeMesh = true;
                    break;

                case Keys.Left:
                    meshColumns    = Math.Max(2, meshColumns - 2);
                    initializeMesh = true;
                    break;

                case Keys.Add:
                    if (shiftKey)
                    {
                        additionalCPULoad += 100;
                    }
                    else
                    {
                        threadCount++;
                    }
                    break;

                case Keys.Subtract:
                    if (shiftKey)
                    {
                        additionalCPULoad = Math.Max(0, additionalCPULoad - 100);
                    }
                    else
                    {
                        threadCount = Math.Max(1, threadCount - 1);
                    }
                    break;

                case Keys.Enter:
                    if (keyToggles.ContainsKey(Keys.Enter))
                    {
                        keyToggles[Keys.Enter] = !keyToggles[Keys.Enter];
                    }
                    else
                    {
                        keyToggles[Keys.Enter] = true;
                    }
                    break;

                default:
                    break;
                }
                updateText();
            };
            #endregion

            #region Render mesh group
            // Action for rendering a group of meshes for a
            // context (based on number of available contexts)
            Action <int, DeviceContext, Matrix, Matrix> renderMeshGroup = (contextIndex, renderContext, view, projection) =>
            {
                var viewProjection = view * projection;

                // Determine the meshes to render for this context
                int batchSize  = (int)Math.Floor((double)meshes.Count / contextList.Length);
                int startIndex = batchSize * contextIndex;
                int endIndex   = Math.Min(startIndex + batchSize, meshes.Count - 1);
                // If this is the last context include whatever remains to be
                // rendered due to the rounding above.
                if (contextIndex == contextList.Length - 1)
                {
                    endIndex = meshes.Count - 1;
                }

                // Loop over the meshes for this context and render them
                var perObject = new ConstantBuffers.PerObject();
                for (var i = startIndex; i <= endIndex; i++)
                {
                    // Simulate additional CPU load
                    for (var j = 0; j < additionalCPULoad; j++)
                    {
                        viewProjection = Matrix.Multiply(view, projection);
                    }

                    // Retrieve current mesh
                    var m = meshes[i];

                    // Check if this is a rotating mesh
                    if (rotateMeshes.Contains(m))
                    {
                        var rotate = Matrix.RotationAxis(Vector3.UnitY, m.Clock.ElapsedMilliseconds / 1000.0f);
                        perObject.World = m.World * rotate * worldMatrix;
                    }
                    else
                    {
                        perObject.World = m.World * worldMatrix;
                    }

                    // Update perObject constant buffer
                    perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.Invert(perObject.World));
                    perObject.WorldViewProjection   = perObject.World * viewProjection;
                    perObject.Transpose();
                    renderContext.UpdateSubresource(ref perObject, perObjectBuffer);

                    // Provide the material and armature constant buffer to the mesh renderer
                    m.PerArmatureBuffer = perArmatureBuffer;
                    m.PerMaterialBuffer = perMaterialBuffer;

                    // Render the mesh using the provided DeviceContext
                    m.Render(renderContext);
                }
            };

            #endregion

            #region Render scene

            // Action for rendering the entire scene
            Action <DeviceContext, Matrix, Matrix, RenderTargetView, DepthStencilView, DualParaboloidMap> renderScene = (context, view, projection, rtv, dsv, envMap) =>
            {
                // We must initialize the context every time we render
                // the scene as we are changing the state depending on
                // whether we are rendering the envmaps or final scene
                InitializeContext(context, false);

                // We always need the immediate context
                // Note: the passed in context will normally be the immediate context
                // however it is possible to run this method threaded also.
                var immediateContext = this.DeviceManager.Direct3DDevice.ImmediateContext;

                // Clear depth stencil view
                context.ClearDepthStencilView(dsv, DepthStencilClearFlags.Depth | DepthStencilClearFlags.Stencil, 1.0f, 0);
                // Clear render target view
                context.ClearRenderTargetView(rtv, background);

                // Create viewProjection matrix
                var viewProjection = Matrix.Multiply(view, projection);

                // Extract camera position from view
                var camPosition = Matrix.Transpose(Matrix.Invert(view)).Column4;
                cameraPosition = new Vector3(camPosition.X, camPosition.Y, camPosition.Z);

                // Setup the per frame constant buffer
                var perFrame = new ConstantBuffers.PerFrame();
                perFrame.Light.Color = new Color(0.9f, 0.9f, 0.9f, 1.0f);
                var lightDir = Vector3.Transform(new Vector3(-1f, -1f, -1f), worldMatrix);
                perFrame.Light.Direction = new Vector3(lightDir.X, lightDir.Y, lightDir.Z);
                perFrame.CameraPosition  = cameraPosition;
                context.UpdateSubresource(ref perFrame, perFrameBuffer);

                // Render each object

                // Prepare the default per material constant buffer
                var perMaterial = new ConstantBuffers.PerMaterial();
                perMaterial.Ambient       = new Color4(0.2f);
                perMaterial.Diffuse       = Color.White;
                perMaterial.Emissive      = new Color4(0);
                perMaterial.Specular      = Color.White;
                perMaterial.SpecularPower = 20f;
                context.UpdateSubresource(ref perMaterial, perMaterialBuffer);

                // ----------Render meshes------------

                if (contextList.Length == 1)
                {
                    // If there is only one context available there is no need to
                    // generate command lists and execute them so just render the
                    // mesh directly on the current context (which may or may
                    // not be an immediate context depending on the caller).
                    renderMeshGroup(0, context, view, projection);
                }
                else
                {
                    // There are multiple contexts therefore
                    // we are using deferred contexts. Prepare a
                    // separate thread for each available context
                    // and render a group of meshes on each.
                    Task[]        renderTasks = new Task[contextList.Length];
                    CommandList[] commands    = new CommandList[contextList.Length];
                    var           viewports   = context.Rasterizer.GetViewports();

                    for (var i = 0; i < contextList.Length; i++)
                    {
                        // Must store the iteration value in another variable
                        // or each task action will use the last iteration value.
                        var contextIndex = i;

                        // Create task to run on new thread from ThreadPool
                        renderTasks[i] = Task.Run(() =>
                        {
                            // Retrieve context for this thread
                            var renderContext = contextList[contextIndex];
                            // Initialize the context state
                            InitializeContext(renderContext, false);

                            // Set the render targets and viewport
                            renderContext.OutputMerger.SetRenderTargets(dsv, rtv);
                            renderContext.Rasterizer.SetViewports(viewports);

                            // If we are rendering for an env map we must set the
                            // per environment map buffer.
                            if (envMap != null)
                            {
                                renderContext.VertexShader.SetConstantBuffer(4, envMap.PerEnvMapBuffer);
                                renderContext.PixelShader.SetConstantBuffer(4, envMap.PerEnvMapBuffer);
                            }
                            // Render logic
                            renderMeshGroup(contextIndex, renderContext, view, projection);

                            // Create the command list
                            if (renderContext.TypeInfo == DeviceContextType.Deferred)
                            {
                                commands[contextIndex] = renderContext.FinishCommandList(false);
                            }
                        });
                    }
                    // Wait for all the tasks to complete
                    Task.WaitAll(renderTasks);

                    // Replay the command lists on the immediate context
                    for (var i = 0; i < contextList.Length; i++)
                    {
                        if (contextList[i].TypeInfo == DeviceContextType.Deferred && commands[i] != null)
                        {
                            immediateContext.ExecuteCommandList(commands[i], false);
                            // Clean up command list
                            commands[i].Dispose();
                            commands[i] = null;
                        }
                    }
                }
            };

            #endregion

            long frameCount      = 0;
            int  lastThreadCount = threadCount;

            keyToggles[Keys.Enter] = false;

            // Create and run the render loop
            RenderLoop.Run(Window, () =>
            {
                // Allow dynamic changes to number of reflectors and replications
                if (initializeMesh)
                {
                    initializeMesh = false;
                    createMeshes();
                }

                if (keyToggles[Keys.Enter])
                {
                    // Export the paraboloid maps
                    var i = 0;
                    foreach (var item in envMaps)
                    {
                        using (var tex = item.EnvMapSRV.ResourceAs <Texture2D>())
                        {
                            for (var j = 0; j < tex.Description.ArraySize; j++)
                            {
                                CopyTexture.SaveToFile(DeviceManager, tex, String.Format("DualMap{0}_{1}.png", i, j), null, tex.Description.MipLevels * j);
                            }
                            i++;
                        }
                    }

                    keyToggles[Keys.Enter] = false;
                }

                // Allow dynamic chnages to the number of threads to use
                if (lastThreadCount != threadCount)
                {
                    SetupContextList();
                    lastThreadCount = threadCount;
                }

                // Start of frame:
                frameCount++;

                // Retrieve immediate context
                var context = DeviceManager.Direct3DContext;

                //if (frameCount % 3 == 1) // to update envmap once every third frame
                //{
                #region Update environment maps

                // Update each of the environment maps
                activeVertexShader   = envMapVSShader;
                activeGeometryShader = envMapGSShader;
                activePixelShader    = envMapPSShader;

                // Render the scene from the perspective of each of the environment maps
                foreach (var envMap in envMaps)
                {
                    var mesh = envMap.Reflector as MeshRenderer;
                    if (mesh != null)
                    {
                        // Calculate view point for reflector
                        var meshCenter = Vector3.Transform(mesh.Mesh.Extent.Center, mesh.World * worldMatrix);
                        envMap.SetViewPoint(new Vector3(meshCenter.X, meshCenter.Y, meshCenter.Z));
                        // Render envmap in single full render pass using
                        // geometry shader instancing.
                        envMap.UpdateSinglePass(context, renderScene);
                    }
                }

                #endregion
                //}

                #region Render final scene
                // Reset the vertex, geometry and pixel shader
                activeVertexShader   = vertexShader;
                activeGeometryShader = null;
                activePixelShader    = blinnPhongShader;
                // Initialize context (also resetting the render targets)
                InitializeContext(context, true);

                // Render the final scene
                renderScene(context, viewMatrix, projectionMatrix, RenderTargetView, DepthStencilView, null);
                #endregion

                // Render FPS
                fps.Render();

                // Render instructions + position changes
                textRenderer.Render();

                // Present the frame
                Present();
            });
            #endregion
        }
    }