public void VerifyROfRhoMonteCarloMeasuredNoNoiseMonteCarloModel()
        {
            var independentValues = new double[] { 1, 2, 3, 4, 5, 6 }; // rho [mm]
            var actualProperties  = new OpticalProperties(mua: 0.01, musp: 1.0, g: 0.8, n: 1.4);
            var initialGuess      = new OpticalProperties(mua: 0.02, musp: 1.2, g: 0.8, n: 1.4);

            var simulatedMeasured = ComputationFactory.ComputeReflectance(
                ForwardSolverType.MonteCarlo,
                SolutionDomainType.ROfRho,
                ForwardAnalysisType.R,
                new object[] { new[] { actualProperties }, independentValues });

            var standardDeviation = simulatedMeasured;

            double[] fit = ComputationFactory.SolveInverse(
                ForwardSolverType.MonteCarlo,
                OptimizerType.MPFitLevenbergMarquardt,
                SolutionDomainType.ROfRho,
                simulatedMeasured,
                standardDeviation,
                InverseFitType.MuaMusp,
                new object[] { new[] { initialGuess }, independentValues });

            var convergedMua  = fit[0];
            var convergedMusp = fit[1];

            Assert.Less(Math.Abs(convergedMua - 0.01), 1e-6);
            Assert.Less(Math.Abs(convergedMusp - 1.0), 1e-6);
        }
        public void VerifyROfRhoMonteCarloMeasuredNoNoiseSDAModel()
        {
            var independentValues = new double[] { 10, 11, 12, 13, 14, 15 }; // rho [mm]
            var actualProperties  = new OpticalProperties(mua: 0.01, musp: 1.0, g: 0.8, n: 1.4);
            var initialGuess      = new OpticalProperties(mua: 0.02, musp: 1.2, g: 0.8, n: 1.4);
            var lowerBounds       = new double[] { 0, 0, 0, 0 };
            var upperBounds       = new double[] { double.PositiveInfinity, double.PositiveInfinity, double.PositiveInfinity, double.PositiveInfinity };

            var simulatedMeasured = ComputationFactory.ComputeReflectance(
                ForwardSolverType.MonteCarlo,
                SolutionDomainType.ROfRho,
                ForwardAnalysisType.R,
                new object[] { new[] { actualProperties }, independentValues });

            var standardDeviation = simulatedMeasured;

            double[] fit = ComputationFactory.SolveInverse(
                ForwardSolverType.DistributedPointSourceSDA,
                OptimizerType.MPFitLevenbergMarquardt,
                SolutionDomainType.ROfRho,
                simulatedMeasured,
                standardDeviation,
                InverseFitType.MuaMusp,
                new object[] { new[] { initialGuess }, independentValues },
                lowerBounds,
                upperBounds);

            var convergedMua  = fit[0];
            var convergedMusp = fit[1];

            Assert.Less(Math.Abs(convergedMua - 0.01), 0.002);
            Assert.Less(Math.Abs(convergedMusp - 1.0), 0.11);
        }
Ejemplo n.º 3
0
 public void GetVectorizedIndependentVariableQueryNew_can_be_called_using_enum_inputs()
 {
     var test = ComputationFactory.ComputeReflectance(
         ForwardSolverType.MonteCarlo,
         SolutionDomainType.ROfRho,
         ForwardAnalysisType.R,
         new object[] { new[] { new OpticalProperties(0.01, 1, 0.8, 1.4) }, new double[] { 1, 2, 3 } });
 }
Ejemplo n.º 4
0
        public void validate_ROfRhoAndTime_With_Wavelength()
        {
            // used values for tissue=liver
            var scatterer     = new PowerLawScatterer(0.84, 0.55);
            var hbAbsorber    = new ChromophoreAbsorber(ChromophoreType.Hb, 66);
            var hbo2Absorber  = new ChromophoreAbsorber(ChromophoreType.HbO2, 124);
            var fatAbsorber   = new ChromophoreAbsorber(ChromophoreType.Fat, 0.02);
            var waterAbsorber = new ChromophoreAbsorber(ChromophoreType.H2O, 0.87);

            var n     = 1.4;
            var wvs   = new double[] { 650, 700 };
            var rhos  = new double[] { 0.5, 1.625 };
            var times = new double[] { 0.05, 0.10 };

            var tissue = new Tissue(
                new IChromophoreAbsorber[] { hbAbsorber, hbo2Absorber, fatAbsorber, waterAbsorber },
                scatterer,
                "test_tissue",
                n);

            var ops = wvs.Select(wv => tissue.GetOpticalProperties(wv)).ToArray();

            var rVsWavelength = ComputationFactory.ComputeReflectance(
                new PointSourceSDAForwardSolver(),
                SolutionDomainType.ROfRhoAndTime,
                ForwardAnalysisType.R,
                new object[]
            {
                ops,
                rhos,
                times
            });

            // return from ROfRhoAndTime is new double[ops.Length * rhos.Length * ts.Length];
            // order is: (ops0,rhos0,ts0), (ops0,rhos0,ts1)...(ops0,rhos0,tsnt-1)
            //           (ops0,rhos1,ts0), (ops0,rhos1,ts1)...(ops0,rhos1,tsnt-1)
            //           ...
            //           (ops0,rhosnr-1,ts0),.................(ops0,rhosnr-1,tsnt-1)
            //           ... repeat above with ops1...

            // [0] -> ops0=650, rho0=0.5, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[0] - 0.044606) < 0.000001); // API match
            // [1] -> ops0=650, rho0=0.5, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[1] - 0.005555) < 0.000001);
            // [2] -> ops0=650, rho1=1.635, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[2] - 0.036900) < 0.000001); // API match
            // [3] -> ops0=650, rho1=1.635, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[3] - 0.005053) < 0.000001);
            // [4] -> ops1=700, rho0=0.5, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[4] - 0.057894) < 0.000001); // API match
            // [5] -> ops1=700, rho0=0.5, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[5] - 0.010309) < 0.000001);
            // [6] -> ops1=700, rho1=1.635, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[6] - 0.048493) < 0.000001); // API match
            // [7] -> ops1=700, rho1=1.635, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[7] - 0.009434) < 0.000001);
        }
Ejemplo n.º 5
0
        public void validate_ROfFxAndTime_With_Wavelength()
        {
            // used values for tissue=liver
            var scatterer     = new PowerLawScatterer(0.84, 0.55);
            var hbAbsorber    = new ChromophoreAbsorber(ChromophoreType.Hb, 66);
            var hbo2Absorber  = new ChromophoreAbsorber(ChromophoreType.HbO2, 124);
            var fatAbsorber   = new ChromophoreAbsorber(ChromophoreType.Fat, 0.02);
            var waterAbsorber = new ChromophoreAbsorber(ChromophoreType.H2O, 0.87);

            var n     = 1.4;
            var wvs   = new double[] { 650, 700 };
            var fxs   = new double[] { 0.0, 0.5 };
            var times = new double[] { 0.05, 0.10 };

            var tissue = new Tissue(
                new IChromophoreAbsorber[] { hbAbsorber, hbo2Absorber, fatAbsorber, waterAbsorber },
                scatterer,
                "test_tissue",
                n);

            var ops = wvs.Select(wv => tissue.GetOpticalProperties(wv)).ToArray();

            var rVsWavelength = ComputationFactory.ComputeReflectance(
                new DistributedPointSourceSDAForwardSolver(),
                SolutionDomainType.ROfFxAndTime,
                ForwardAnalysisType.R,
                new object[]
            {
                ops,
                fxs,
                times
            });

            // return from ROfFxAndTime is new double[ops.Length * fxs.Length * ts.Length];
            // order is: (ops0,fxs0,ts0), (ops0,fxs0,ts1)...(ops0,fxs0,tsnt-1)
            //           (ops0,fxs1,ts0), (ops0,fxs1,ts1)...(ops0,fxs1,tsnt-1)
            //           ...
            //           (ops0,fxsnf-1,ts0),................(ops0,fxsnf-1,tsnt-1)
            //           ... repeat above with ops1...

            // [0] -> ops0=650, fx0=0.0, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[0] - 1.558702) < 0.000001);
            // [1] -> ops0=650, fx0=0.0, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[1] - 0.391871) < 0.000001);
            // [2] -> ops0=650, fx1=0.5, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[2] - 5.023055e-12) < 0.000001e-12);
            // [3] -> ops0=650, fx1=0.5, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[3] - 1.032586e-13) < 0.000001e-13);
            // [4] -> ops1=700, fx0=0.0, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[4] - 2.218329) < 0.000001);
            // [5] -> ops1=700, fx1=0.5, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[5] - 0.797200) < 0.000001);
            // [6] -> ops1=700, fx0=0.0, ts0=0.05
            Assert.IsTrue(Math.Abs(rVsWavelength[6] - 1.347053e-12) < 0.000001e-12);
            // [7] -> ops1=700, fx1=0.5, ts1=0.10
            Assert.IsTrue(Math.Abs(rVsWavelength[7] - 2.052883e-13) < 0.000001e-13);
        }
        public InverseSolutionResult SolveInverse()
        {
            var lowerBounds = new double[] { 0, 0, 0, 0 };
            var upperBounds = new double[] { double.PositiveInfinity, double.PositiveInfinity, double.PositiveInfinity, double.PositiveInfinity };

            var measuredOpticalProperties = GetMeasuredOpticalProperties();
            var measuredDataValues        = GetSimulatedMeasuredData();

            var dependentValues            = measuredDataValues.ToArray();
            var initGuessOpticalProperties = GetInitialGuessOpticalProperties();
            var initGuessParameters        = GetParametersInOrder(initGuessOpticalProperties);

            // replace unconstrained L-M optimization with constrained version
            // this solves problem of when distributed source solution produces neg OPs during inversion
            //var fit = ComputationFactory.SolveInverse(
            //    InverseForwardSolverTypeOptionVM.SelectedValue,
            //    OptimizerTypeOptionVM.SelectedValue,
            //    SolutionDomainTypeOptionVM.SelectedValue,
            //    dependentValues,
            //    dependentValues, // set standard deviation, sd, to measured (works w/ or w/o noise)
            //    InverseFitTypeOptionVM.SelectedValue,
            //    initGuessParameters.Values.ToArray());

            var fit = ComputationFactory.SolveInverse(
                InverseForwardSolverTypeOptionVM.SelectedValue,
                OptimizerTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                dependentValues,
                dependentValues, // set standard deviation, sd, to measured (works w/ or w/o noise)
                InverseFitTypeOptionVM.SelectedValue,
                initGuessParameters.Values.ToArray(),
                lowerBounds, upperBounds);

            var fitOpticalProperties = ComputationFactory.UnFlattenOpticalProperties(fit);

            var fitParameters = GetParametersInOrder(fitOpticalProperties);

            var resultDataValues = ComputationFactory.ComputeReflectance(
                InverseForwardSolverTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                ForwardAnalysisType.R,
                fitParameters.Values.ToArray());

            var resultDataPoints = GetDataPoints(resultDataValues);

            return(new InverseSolutionResult
            {
                FitDataPoints = resultDataPoints,
                MeasuredOpticalProperties = (OpticalProperties[])measuredOpticalProperties,
                // todo: currently only supports homog OPs
                GuessOpticalProperties = (OpticalProperties[])initGuessOpticalProperties,
                // todo: currently only supports homog OPss
                FitOpticalProperties = fitOpticalProperties
            });
        }
        public double[] CalculateInitialGuess()
        {
            var opticalProperties = GetInitialGuessOpticalProperties();

            var parameters = GetParametersInOrder(opticalProperties);

            return ComputationFactory.ComputeReflectance(
                InverseForwardSolverTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                ForwardAnalysisType.R,
                parameters.Values.ToArray());
        }
Ejemplo n.º 8
0
        public void validate_ComputeReflectance_can_be_called_using_IForwardSolver()
        {
            var reflectance = ComputationFactory.ComputeReflectance(
                new NurbsForwardSolver(),
                SolutionDomainType.ROfFx,
                ForwardAnalysisType.dRdMua,
                new object[]
            {
                new [] { new OpticalProperties(0.01, 1, 0.8, 1.4) },
                new double[] { 1, 2, 3 }
            });

            Assert.IsTrue(Math.Abs(reflectance[0] + 0.005571) < 0.000001);
        }
        private double[] GetSimulatedMeasuredData()
        {
            var opticalProperties = GetMeasuredOpticalProperties();

            var parameters = GetParametersInOrder(opticalProperties);

            var measuredData = ComputationFactory.ComputeReflectance(
                MeasuredForwardSolverTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                ForwardAnalysisType.R,
                parameters.Values.ToArray());

            return measuredData.AddNoise(PercentNoise);
        }
Ejemplo n.º 10
0
        public IDataPoint[][] ExecuteForwardSolver()
        {
            var opticalProperties = GetOpticalProperties();

            var parameters = GetParametersInOrder(opticalProperties);

            var reflectance = ComputationFactory.ComputeReflectance(
                ForwardSolverTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                ForwardAnalysisTypeOptionVM.SelectedValue,
                parameters.Values.ToArray());

            return(GetDataPoints(reflectance));
        }
Ejemplo n.º 11
0
        public void validate_ComputeReflectance_can_be_called_using_enum_forward_solver()
        {
            var reflectance = ComputationFactory.ComputeReflectance(
                ForwardSolverType.MonteCarlo,
                SolutionDomainType.ROfRho,
                ForwardAnalysisType.R,
                new object[]
            {
                // could have array of OPs, one set for each tissue region
                new[] { new OpticalProperties(0.01, 1, 0.8, 1.4) },
                new double[] { 1, 2, 3 }
            });

            Assert.IsTrue(Math.Abs(reflectance[0] - 0.021093) < 0.000001);
        }
        public InverseSolutionResult SolveInverse()
        {
            var measuredOpticalProperties = GetMeasuredOpticalProperties();
            var measuredDataValues = GetSimulatedMeasuredData();

            var dependentValues = measuredDataValues.ToArray();
            var initGuessOpticalProperties = GetInitialGuessOpticalProperties();
            var initGuessParameters = GetParametersInOrder(initGuessOpticalProperties);

            double[] fit = ComputationFactory.SolveInverse(
                InverseForwardSolverTypeOptionVM.SelectedValue,
                OptimizerTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                dependentValues,
                dependentValues, // set standard deviation, sd, to measured (works w/ or w/o noise)
                InverseFitTypeOptionVM.SelectedValue,
                initGuessParameters.Values.ToArray());

            var fitOpticalProperties = ComputationFactory.UnFlattenOpticalProperties(fit);

            var fitParameters = GetParametersInOrder(fitOpticalProperties);

            var resultDataValues = ComputationFactory.ComputeReflectance(
                InverseForwardSolverTypeOptionVM.SelectedValue,
                SolutionDomainTypeOptionVM.SelectedValue,
                ForwardAnalysisType.R,
                fitParameters.Values.ToArray());

            var resultDataPoints = GetDataPoints(resultDataValues);

            return new InverseSolutionResult
            {
                FitDataPoints = resultDataPoints,
                MeasuredOpticalProperties = (OpticalProperties[])measuredOpticalProperties, // todo: currently only supports homog OPs
                GuessOpticalProperties = (OpticalProperties[])initGuessOpticalProperties, // todo: currently only supports homog OPss
                FitOpticalProperties = fitOpticalProperties
            };
        }
Ejemplo n.º 13
0
        public void validate_ROfFxAndFt_With_Wavelength()
        {
            // used values for tissue=liver
            var scatterer     = new PowerLawScatterer(0.84, 0.55);
            var hbAbsorber    = new ChromophoreAbsorber(ChromophoreType.Hb, 66);
            var hbo2Absorber  = new ChromophoreAbsorber(ChromophoreType.HbO2, 124);
            var fatAbsorber   = new ChromophoreAbsorber(ChromophoreType.Fat, 0.02);
            var waterAbsorber = new ChromophoreAbsorber(ChromophoreType.H2O, 0.87);

            var n   = 1.4;
            var wvs = new double[] { 650, 700 };
            var fxs = new double[] { 0.0, 0.5 };
            var fts = new double[] { 0.0, 0.50 };

            var tissue = new Tissue(
                new IChromophoreAbsorber[] { hbAbsorber, hbo2Absorber, fatAbsorber, waterAbsorber },
                scatterer,
                "test_tissue",
                n);

            var ops = wvs.Select(wv => tissue.GetOpticalProperties(wv)).ToArray();

            var rVsWavelength = ComputationFactory.ComputeReflectance(
                new DistributedPointSourceSDAForwardSolver(),
                SolutionDomainType.ROfFxAndFt,
                ForwardAnalysisType.R,
                new object[]
            {
                ops,
                fxs,
                fts
            });

            // return from ROfFxAndFt is new double[ops.Length * fxs.Length * fts.Length];
            // order is: (ops0,fxs0,fts0)real, (ops0,fxs0,ts1)real...(ops0,fxs0,ftsnt-1)real
            //           (ops0,fxs1,fts0)real, (ops0,fxs1,ts1)real...(ops0,fxs1,ftsnt-1)real
            //           ...
            //           (ops0,fxsnf-1,fts0)real,.................(ops0,fxsnf-1,ftsnt-1)real
            //           ... repeat above with imag, then with ops1...

            // [0] -> ops0=650, fx0=0.0, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[0] - 1.890007) < 0.000001); // API match
            // [1] -> ops0=650, fx0=0.0, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[1] - 1.888160) < 0.000001);
            // [2] -> ops0=650, fx1=0.5, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[2] - 0.562537) < 0.000001); // API match
            // [3] -> ops0=650, fx1=0.5, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[3] - 0.562543) < 0.000001);
            // [4] -> ops1=700, fx0=0.0, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[4] - 2.118427) < 0.000001); // API match
            // [5] -> ops1=700, fx0=0.0, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[5] - 2.113377) < 0.000001);
            // [6] -> ops1=700, fx1=0.5, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[6] - 0.543539) < 0.000001); // API match
            // [7] -> ops1=700, fx1=0.5, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[7] - 0.543546) < 0.000001);
            // [8] -> ops0=650, fx0=0.0, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[8] - 0.0) < 0.000001); // API match
            // [9] -> ops0=650, fx0=0.0, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[9] + 0.045122) < 0.000001);
            // [10] -> ops0=650, fx1=0.5, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[10] - 0.0) < 0.000001); // API match
            // [11] -> ops0=650, fx1=0.5, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[11] + 0.000799) < 0.000001);
            // [12] -> ops1=700, fx0=0.0, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[12] - 0.0) < 0.000001); // API match
            // [13] -> ops1=700, fx0=0.0, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[13] + 0.071758) < 0.000001);
            // [14] -> ops1=700, fx1=0.5, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[14] - 0.0) < 0.000001); // API match
            // [15] -> ops1=700, fx1=0.5, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[15] + 0.000651) < 0.000001);
        }
Ejemplo n.º 14
0
        public void validate_ROfRhoAndFt_With_Wavelength()
        {
            // used values for tissue=liver
            var scatterer     = new PowerLawScatterer(0.84, 0.55);
            var hbAbsorber    = new ChromophoreAbsorber(ChromophoreType.Hb, 66);
            var hbo2Absorber  = new ChromophoreAbsorber(ChromophoreType.HbO2, 124);
            var fatAbsorber   = new ChromophoreAbsorber(ChromophoreType.Fat, 0.02);
            var waterAbsorber = new ChromophoreAbsorber(ChromophoreType.H2O, 0.87);

            var n    = 1.4;
            var wvs  = new double[] { 650, 700 };
            var rhos = new double[] { 0.5, 1.625 };
            var fts  = new double[] { 0.0, 0.50 };

            var tissue = new Tissue(
                new IChromophoreAbsorber[] { hbAbsorber, hbo2Absorber, fatAbsorber, waterAbsorber },
                scatterer,
                "test_tissue",
                n);

            var ops = wvs.Select(wv => tissue.GetOpticalProperties(wv)).ToArray();

            var rVsWavelength = ComputationFactory.ComputeReflectance(
                new PointSourceSDAForwardSolver(),
                SolutionDomainType.ROfRhoAndFt,
                ForwardAnalysisType.R,
                new object[]
            {
                ops,
                rhos,
                fts
            });

            // return from ROfRhoAndFt is new double[ops.Length * rhos.Length * fts.Length];
            // order is: (ops0,rhos0,fts0)real, (ops0,rhos0,fts1)real...(ops0,rhos0,ftsnt-1)real
            //           (ops0,rhos1,fts0)real, (ops0,rhos1,fts1)real...(ops0,rhos1,ftsnt-1)real
            //           ...
            //           (ops0,rhosnr-1,fts0)real,.................(ops0,rhosnr-1,ftsnt-1)real
            //           ... repeat above with imag, then next ops1...

            // [0] -> ops0=650, rho0=0.5, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[0] - 0.037575) < 0.000001);
            // [1] -> ops0=650, rho0=0.5, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[1] - 0.037511) < 0.000001);
            // [2] -> ops0=650, rho1=1.635, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[2] - 0.009306) < 0.000001);
            // [3] -> ops0=650, rho1=1.635, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[3] - 0.009255) < 0.000001);
            // [4] -> ops1=700, rho0=0.5, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[4] - 0.036425) < 0.000001);
            // [5] -> ops1=700, rho0=0.5, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[5] - 0.036310) < 0.000001);
            // [6] -> ops1=700, rho1=1.635, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[6] - 0.010657) < 0.000001);
            // [7] -> ops1=700, rho1=1.635, fts1=0.5 real
            Assert.IsTrue(Math.Abs(rVsWavelength[7] - 0.010558) < 0.000001);
            // [8] -> ops0=650, rho0=0.5, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[8] - 0.0) < 0.000001);
            // [9] -> ops0=650, rho0=0.5, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[9] + 0.001200) < 0.000001);
            // [10] -> ops0=650, rho1=1.635, fts0=0.0 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[10] - 0.0) < 0.000001);
            // [11] -> ops1=650, rho1=1.635, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[11] + 0.000674) < 0.000001);
            // [12] -> ops1=700, rho0=0.5, fts0=0.0
            Assert.IsTrue(Math.Abs(rVsWavelength[12] - 0.0) < 0.000001);
            // [13] -> ops1=700, rho0=0.5, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[13] + 0.001446) < 0.000001);
            // [14] -> ops1=700, rho1=1.635, fts0=0.0 real
            Assert.IsTrue(Math.Abs(rVsWavelength[14] - 0.0) < 0.000001);
            // [15] -> ops1=700, rho1=1.635, fts1=0.5 imag
            Assert.IsTrue(Math.Abs(rVsWavelength[15] + 0.000929) < 0.000001);
        }
Ejemplo n.º 15
0
        public string Plot(IPlotParameters plotParameters)
        {
            var parameters        = (SolutionDomainPlotParameters)plotParameters;
            var fs                = parameters.ForwardSolverType;
            var op                = parameters.OpticalProperties;
            var independentValue  = parameters.IndependentAxes.Value;
            var independentValues = parameters.XAxis.AsEnumerable().ToArray();

            try
            {
                Plots plot;
                var   parametersInOrder = _parameterTools.GetParametersInOrder(
                    _parameterTools.GetOpticalPropertiesObject(parameters.OpticalProperties),
                    plotParameters.XAxis.AsEnumerable().ToArray(),
                    parameters.SolutionDomain,
                    parameters.IndependentAxes.Label,
                    parameters.IndependentAxes.Value);
                var parametersInOrderObject = parametersInOrder.Values.ToArray();
                var reflectance             = parameters.NoiseValue > 0 ? ComputationFactory.ComputeReflectance(fs, parameters.SolutionDomain, parameters.ModelAnalysis, parametersInOrderObject).AddNoise(parameters.NoiseValue) : ComputationFactory.ComputeReflectance(fs, parameters.SolutionDomain, parameters.ModelAnalysis, parametersInOrderObject);
                var isComplex          = ComputationFactory.IsComplexSolver(parameters.SolutionDomain);
                var hasIndependentAxis = parameters.SolutionDomain != SolutionDomainType.ROfFx && parameters.SolutionDomain != SolutionDomainType.ROfRho;
                if (!isComplex)
                {
                    var xyPoints = independentValues.Zip(reflectance, (x, y) => new Point(x, y));
                    var plotData = new PlotData {
                        Data = xyPoints, Label = parameters.SolutionDomain.ToString()
                    };
                    plot = new Plots {
                        Id       = hasIndependentAxis ? $"{parameters.SolutionDomain.ToString()}Fixed{parameters.IndependentAxes.Label}" : $"{parameters.SolutionDomain.ToString()}",
                        PlotList = new List <PlotDataJson>()
                    };
                    plot.PlotList.Add(new PlotDataJson {
                        Data = plotData.Data.Select(item => new List <double> {
                            item.X, item.Y
                        }).ToList(),
                        Label = hasIndependentAxis ? $"{fs} μa={op.Mua} μs'={op.Musp} {parameters.IndependentAxes.Label}={parameters.IndependentAxes.Value}" : $"{fs} μa={op.Mua} μs'={op.Musp}"
                    });
                }
                else
                {
                    var offset = reflectance.Length / 2;
                    IEnumerable <ComplexPoint> xyPointsComplex = independentValues.Zip(reflectance, (x, y) => new ComplexPoint(x, new Complex(y, reflectance[Array.IndexOf(reflectance, y) + offset]))).ToArray();
                    var xyPointsReal      = xyPointsComplex.Select(item => new Point(item.X, item.Y.Real));
                    var xyPointsImaginary = xyPointsComplex.Select(item => new Point(item.X, item.Y.Imaginary));
                    var plotDataReal      = new PlotData {
                        Data = xyPointsReal, Label = parameters.SolutionDomain.ToString()
                    };
                    var plotDataImaginary = new PlotData {
                        Data = xyPointsImaginary, Label = parameters.SolutionDomain.ToString()
                    };
                    plot = new Plots {
                        Id       = $"{parameters.SolutionDomain.ToString()}Fixed{parameters.IndependentAxes.Label}",
                        PlotList = new List <PlotDataJson>()
                    };
                    plot.PlotList.Add(new PlotDataJson {
                        Data = plotDataReal.Data.Select(item => new List <double> {
                            item.X, item.Y
                        }).ToList(),
                        Label = $"{fs} μa={op.Mua} μs'={op.Musp} {parameters.IndependentAxes.Label}={independentValue}(real)"
                    });
                    plot.PlotList.Add(new PlotDataJson {
                        Data = plotDataImaginary.Data.Select(item => new List <double> {
                            item.X, item.Y
                        }).ToList(),
                        Label = $"{fs} μa={op.Mua} μs'={op.Musp} {parameters.IndependentAxes.Label}={independentValue}(imag)"
                    });
                }
                var msg = JsonConvert.SerializeObject(plot);
                return(msg);
            }
            catch (Exception e)
            {
                _logger.LogError("An error occurred: {Message}", e.Message);
                throw;
            }
        }