Ejemplo n.º 1
0
        /**
         * Calculate the active cells, using the current active columns and dendrite
         * segments. Grow and reinforce synapses.
         *
         * <pre>
         * Pseudocode:
         *   for each column
         *     if column is active and has active distal dendrite segments
         *       call activatePredictedColumn
         *     if column is active and doesn't have active distal dendrite segments
         *       call burstColumn
         *     if column is inactive and has matching distal dendrite segments
         *       call punishPredictedColumn
         *
         * </pre>
         *
         * @param conn
         * @param activeColumnIndices
         * @param learn
         */
        public void ActivateCells(Connections conn, ComputeCycle cycle, int[] activeColumnIndices, bool learn)
        {
            ColumnData columnData = new ColumnData();

            HashSet <Cell> prevActiveCells = conn.GetActiveCells();
            HashSet <Cell> prevWinnerCells = conn.GetWinnerCells();

            List <Column> activeColumns = activeColumnIndices
                                          .OrderBy(i => i)
                                          .Select(i => conn.GetColumn(i))
                                          .ToList();

            Func <Column, Column>         identity = c => c;
            Func <DistalDendrite, Column> segToCol = segment => segment.GetParentCell().GetColumn();

            //@SuppressWarnings({ "rawtypes" })
            GroupBy2 <Column> grouper = GroupBy2 <Column> .Of(
                new Tuple <List <object>, Func <object, Column> >(activeColumns.Cast <object>().ToList(), x => identity((Column)x)),
                new Tuple <List <object>, Func <object, Column> >(new List <DistalDendrite>(conn.GetActiveSegments()).Cast <object>().ToList(), x => segToCol((DistalDendrite)x)),
                new Tuple <List <object>, Func <object, Column> >(new List <DistalDendrite>(conn.GetMatchingSegments()).Cast <object>().ToList(), x => segToCol((DistalDendrite)x)));

            double permanenceIncrement = conn.GetPermanenceIncrement();
            double permanenceDecrement = conn.GetPermanenceDecrement();

            foreach (Tuple t in grouper)
            {
                columnData = columnData.Set(t);

                if (columnData.IsNotNone(ACTIVE_COLUMNS))
                {
                    if (columnData.ActiveSegments().Any())
                    {
                        List <Cell> cellsToAdd = ActivatePredictedColumn(conn, columnData.ActiveSegments(),
                                                                         columnData.MatchingSegments(), prevActiveCells, prevWinnerCells,
                                                                         permanenceIncrement, permanenceDecrement, learn);

                        cycle.ActiveCells().UnionWith(cellsToAdd);
                        cycle.WinnerCells().UnionWith(cellsToAdd);
                    }
                    else
                    {
                        Tuple cellsXwinnerCell = BurstColumn(conn, columnData.Column(), columnData.MatchingSegments(),
                                                             prevActiveCells, prevWinnerCells, permanenceIncrement, permanenceDecrement, conn.GetRandom(),
                                                             learn);

                        cycle.ActiveCells().UnionWith((IEnumerable <Cell>)cellsXwinnerCell.Get(0));
                        cycle.WinnerCells().Add((Cell)cellsXwinnerCell.Get(1));
                    }
                }
                else
                {
                    if (learn)
                    {
                        PunishPredictedColumn(conn, columnData.ActiveSegments(), columnData.MatchingSegments(),
                                              prevActiveCells, prevWinnerCells, conn.GetPredictedSegmentDecrement());
                    }
                }
            }
        }