Ejemplo n.º 1
0
 protected override void DisposeObject()
 {
     if (_modelKeypoints != null)
     {
         _modelKeypoints.Dispose();
         _modelKeypoints = null;
     }
     if (_modelDescriptors != null)
     {
         _modelDescriptors.Dispose();
         _modelDescriptors = null;
     }
     if (_modelDescriptorMatcher != null)
     {
         _modelDescriptorMatcher.Dispose();
         _modelDescriptorMatcher = null;
     }
     if (_octagon != null)
     {
         _octagon.Dispose();
         _octagon = null;
     }
 }
Ejemplo n.º 2
0
        /// <summary>
        /// Match feature points using symmetry test and RANSAC
        /// </summary>
        /// <param name="image1">input image1</param>
        /// <param name="image2">input image2</param>
        /// <param name="keypoints1">output keypoint1</param>
        /// <param name="keypoints2">output keypoint2</param>
        /// <returns>return fundemental matrix</returns>
        public Image <Bgr, Byte> Match(Image <Gray, Byte> image1, Image <Gray, Byte> image2,
                                       ref VectorOfKeyPoint keypoints1, ref VectorOfKeyPoint keypoints2, bool computeModelFeatures)
        {
            //1a. Detection of the SURF features
            keypoints2 = null;
            if (computeModelFeatures == true)
            {
                keypoints1 = this._Detector.DetectKeyPointsRaw(image1, null);
            }
            keypoints2 = this._Detector.DetectKeyPointsRaw(image2, null);

            //1b. Extraction of the SURF descriptors
            Matrix <float> descriptors1 = this._Detector.ComputeDescriptorsRaw(image1, null, keypoints1);
            Matrix <float> descriptors2 = this._Detector.ComputeDescriptorsRaw(image2, null, keypoints2);

            //2. Match the two image descriptors
            //Construction of the match
            BruteForceMatcher <float> matcher = new BruteForceMatcher <float>(DistanceType.L2);

            //from image 1 to image 2
            //based on k nearest neighbours (with k=2)
            matcher.Add(descriptors1);
            //Number of nearest neighbors to search for
            int k = 2;
            int n = descriptors2.Rows;
            //The resulting n*k matrix of descriptor index from the training descriptors
            Matrix <int> trainIdx1 = new Matrix <int>(n, k);
            //The resulting n*k matrix of distance value from the training descriptors
            Matrix <float> distance1 = new Matrix <float>(n, k);

            matcher.KnnMatch(descriptors2, trainIdx1, distance1, k, null);
            matcher.Dispose();

            //from image 1 to image 2
            matcher = new BruteForceMatcher <float>(DistanceType.L2);
            matcher.Add(descriptors2);
            n = descriptors1.Rows;
            //The resulting n*k matrix of descriptor index from the training descriptors
            Matrix <int> trainIdx2 = new Matrix <int>(n, k);
            //The resulting n*k matrix of distance value from the training descriptors
            Matrix <float> distance2 = new Matrix <float>(n, k);

            matcher.KnnMatch(descriptors1, trainIdx2, distance2, k, null);

            //3. Remove matches for which NN ratio is > than threshold
            int removed = RatioTest(ref trainIdx1, ref distance1);

            removed = RatioTest(ref trainIdx2, ref distance2);

            //4. Create symmetrical matches
            Matrix <float> symMatches;
            int            symNumber = SymmetryTest(trainIdx1, distance1, trainIdx2, distance2, out symMatches);

            //--------------modified code for zero matches------------
            if (symNumber == 0)  // no proper symmetrical matches, should retry in this case
            {
                return(null);
            }
            //-----------------end modified code----------------------

            Matrix <double> fundementalMatrix = ApplyRANSAC(symMatches, keypoints1, keypoints2, symNumber);//, image2);

            //         Image<Bgr, Byte> resultImage = Features2DToolbox.DrawMatches(image1, modelKeyPoints, image2, observedKeyPoints,
            //indices, new Bgr(255, 0, 0), new Bgr(0, 255, 0), mask, Features2DToolbox.KeypointDrawType.DEFAULT);

            //         return resultImage;
            return(null);   // we do our own drawing of correspondences
        }