Ejemplo n.º 1
0
 //Methods
 /// <summary>
 /// Resets the predictors provider to its initial state.
 /// </summary>
 public void Reset()
 {
     _activationMDW?.Reset();
     _firingMDW?.Reset();
     _activationStat?.Reset();
     _activationDiffStat?.Reset();
     _lastActivation           = 0d;
     _lastNormalizedActivation = 0d;
     _lastSpike = false;
     //Predictors
     foreach (IPredictor predictor in _predictorCollection)
     {
         predictor.Reset();
     }
     return;
 }
Ejemplo n.º 2
0
        //Methods
        public void Run()
        {
            //Filter test
            RealFeatureFilter rff = new RealFeatureFilter(new Interval(-1, 1));

            for (int i = 1; i <= 1500; i++)
            {
                rff.Update(_rand.NextDouble() * _rand.Next(0, 10000));
            }
            double featureValue = 0.5;
            double filterValue  = rff.ApplyFilter(featureValue);
            double reverseValue = rff.ApplyReverse(filterValue);

            Console.WriteLine($"Feature: {featureValue} Filter: {filterValue} Reverse: {reverseValue}");



            //Pulse generator test
            BasicStat sampleStat = new BasicStat();

            sampleStat.Reset();
            PulseGeneratorSettings modSettings = new PulseGeneratorSettings(1, 1.5, PulseGeneratorSettings.TimingMode.Poisson);
            IGenerator             generator   = new PulseGenerator(modSettings);

            int    steps  = 10000;
            double period = 0;

            for (int i = 0; i < steps; i++)
            {
                ++period;
                double sample = generator.Next();
                //Console.WriteLine(sample);
                if (sample != 0)
                {
                    sampleStat.AddSampleValue(period);
                    period = 0;
                }
            }
            Console.WriteLine($"Mean: {sampleStat.ArithAvg} StdDev: {sampleStat.StdDev} Min: {sampleStat.Min} Max: {sampleStat.Max}");
            Console.ReadLine();



            //Random distributions test
            BasicStat rStat = new BasicStat();

            for (int i = 0; i < 200; i++)
            {
                double r = _rand.NextFilterredGaussianDouble(0.5, 1, -0.5, 1);
                rStat.AddSampleValue(r);
                Console.WriteLine(r);
            }
            Console.WriteLine($"Mean: {rStat.ArithAvg} StdDev: {rStat.StdDev} Min: {rStat.Min} Max: {rStat.Max}");
            Console.ReadLine();



            //Activation tests
            double fadingSum = 0;

            for (int i = 0; i < 1000; i++)
            {
                fadingSum *= (1d - 0.1);
                fadingSum += 1d;
                Console.WriteLine(fadingSum);
            }

            Console.ReadLine();


            IActivationFunction testAF = ActivationFactory.Create(new SimpleIFSettings(refractoryPeriods: 0), new Random(0));

            TestActivation(testAF, 100, 3.5, 10, 70);

            SimpleIFSettings setup = new SimpleIFSettings();

            FindAFInputBorders(ActivationFactory.Create(setup, new Random(0)),
                               -0.1,
                               20
                               );



            //Linear algebra test
            double[] flatData =
            {
                0.2,      5,  17.3,   1.01,     54,     7,
                2.2,    5.5, 12.13,  11.57,   5.71,   -85,
                -70.1,   15, -18.3,    0.3,     42, -6.25,
                0.042,    1,  7.75, -81.01, -21.29,  5.44,
                0.1,      4,  -4.3,  18.01,   7.12, -3.14,
                -80.1, 24.4,   4.3,  12.03,  2.789, -13
            };
            Matrix testM = new Matrix(6, 6, flatData);

            /*
             * //Inversion test
             * Matrix resultM = new Matrix(testM);
             * resultM.SingleThreadInverse();
             */
            /*
             * //Transpose test
             * Matrix resultM = testM.Transpose();
             */

            /*
             * //Multiply test
             * Matrix resultM = Matrix.Multiply(testM, testM);
             * for (int i = 0; i < resultM.NumOfRows; i++)
             * {
             *  Console.WriteLine($"{resultM.Data[i][0]}; {resultM.Data[i][1]}; {resultM.Data[i][2]}; {resultM.Data[i][3]}; {resultM.Data[i][4]}; {resultM.Data[i][5]}");
             * }
             */



            ;



            int numOfweights = 3;
            int xIdx, dIdx = 0;

            double[][] data = new double[3][];
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 2;
            data[dIdx][++xIdx] = 1;
            data[dIdx][++xIdx] = 3;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = 1;
            data[dIdx][++xIdx] = 3;
            data[dIdx][++xIdx] = -3;
            ++dIdx;
            data[dIdx]         = new double[numOfweights];
            xIdx               = -1;
            data[dIdx][++xIdx] = -2;
            data[dIdx][++xIdx] = 4;
            data[dIdx][++xIdx] = 4;

            //Matrix M = new Matrix(data, true);
            //Matrix I = M.Inverse(false);
            //Matrix identity = M * I; //Must lead to identity matrix


            Matrix I = new Matrix(3, 3);

            I.AddScalarToDiagonal(1);
            Matrix X = new Matrix(I);

            X.Multiply(0.1);

            Matrix XT = X.Transpose();
            Matrix R  = XT * X;


            Console.ReadLine();



            ///*
            SimpleIFSettings settings = new SimpleIFSettings(new RandomValueSettings(15, 15),
                                                             new RandomValueSettings(0.05, 0.05),
                                                             new RandomValueSettings(5, 5),
                                                             new RandomValueSettings(20, 20),
                                                             0
                                                             );
            IActivationFunction af = ActivationFactory.Create(settings, new Random(0));

            //*/
            TestActivation(af, 800, 0.15, 10, 600);
            return;
        }