Ejemplo n.º 1
0
    public static double zhpco(ref Complex[] ap, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZHPCO factors a complex hermitian packed matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, ZHPFA is slightly faster.
    //
    //    To solve A*X = B, follow ZHPCO by ZHPSL.
    //
    //    To compute inverse(A)*C, follow ZHPCO by ZHPSL.
    //
    //    To compute inverse(A), follow ZHPCO by ZHPDI.
    //
    //    To compute determinant(A), follow ZHPCO by ZHPDI.
    //
    //    To compute inertia(A), follow ZHPCO by ZHPDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex AP[N*(N+1)/2]; on input, the packed form of a
    //    hermitian matrix A.  The columns of the upper triangle are stored
    //    sequentially in a one-dimensional array of length N*(N+1)/2.  On
    //    output, a block diagonal matrix and the multipliers which were used
    //    to obtain it stored in packed form.  The factorization can be written
    //    A = U*D*hermitian(U) where U is a product of permutation and unit
    //    upper triangular matrices, hermitian(U) is the Complex.Conjugateugate transpose
    //    of U, and D is block diagonal with 1 by 1 and 2 by 2 blocks.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, double ZHPCO, an estimate of RCOND, the reciprocal condition of
    //    the matrix.  For the system A*X = B, relative perturbations in A and B
    //    of size EPSILON may cause relative perturbations in X of size
    //    (EPSILON/RCOND).  If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    //  Local Parameters:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    {
        Complex ak;
        Complex akm1;
        Complex bk;
        Complex bkm1;
        Complex denom;
        int     i;
        int     ikm1;
        int     ikp1;
        int     j;
        int     kk;
        int     km1k;
        int     km1km1;
        int     kp;
        int     kps;
        int     ks;
        double  rcond;
        double  s;
        Complex t;

        Complex[] z = new Complex [n];
        //
        //  Find norm of A using only upper half.
        //
        int j1 = 1;

        for (j = 1; j <= n; j++)
        {
            z[j - 1] = new Complex(BLAS1Z.dzasum(j, ap, 1, index: +j1 - 1), 0.0);
            int ij = j1;
            j1 += j;

            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] = new Complex(z[i - 1].Real + typeMethods.zabs1(ap[ij - 1]), 0.0);
                ij      += 1;
            }
        }

        double anorm = 0.0;

        for (j = 0; j < n; j++)
        {
            anorm = Math.Max(anorm, z[j].Real);
        }

        //
        //  Factor.
        //
        ZHPFA.zhpfa(ref ap, n, ref ipvt);
        //
        //  RCOND = 1/(norm(A) * (estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where U*D*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve U*D*W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (i = 0; i < n; i++)
        {
            z[i] = new Complex(0.0, 0.0);
        }

        int k  = n;
        int ik = n * (n - 1) / 2;

        while (0 < k)
        {
            kk   = ik + k;
            ikm1 = ik - (k - 1);

            ks = ipvt[k - 1] switch
            {
Ejemplo n.º 2
0
    public static double zgeco(ref Complex[] a, int lda, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZGECO factors a complex matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, ZGEFA is slightly faster.
    //
    //    To solve A*X = B, follow ZGECO by ZGESL.
    //
    //    To compute inverse(A)*C, follow ZGECO by ZGESL.
    //
    //    To compute determinant(A), follow ZGECO by ZGEDI.
    //
    //    To compute inverse(A), follow ZGECO by ZGEDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex A[LDA*N], on input, the matrix to be
    //    factored.  On output, an upper triangular matrix and the multipliers
    //    used to obtain it.  The factorization can be written A = L*U where
    //    L is a product of permutation and unit lower triangular matrices
    //    and U is upper triangular.
    //
    //    Input, int LDA, the leading dimension of A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, double SGECO, an estimate of the reciprocal condition of A.
    //    For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size (EPSILON/RCOND).
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate
    //    underflows.
    //
    //  Local Parameters:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is
    //    an approximate null vector in the sense that
    //      norm ( A * Z ) = RCOND * norm ( A ) * norm ( Z ).
    //
    {
        int     i;
        int     j;
        int     k;
        int     l;
        double  rcond;
        double  s;
        Complex t;

        Complex[] z = new Complex [n];
        //
        //  Compute the 1-norm of A.
        //
        double anorm = 0.0;

        for (j = 0; j < n; j++)
        {
            anorm = Math.Max(anorm, BLAS1Z.dzasum(n, a, 1, index: +0 + j * lda));
        }

        //
        //  Factor.
        //
        ZGEFA.zgefa(ref a, lda, n, ref ipvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and hermitian(A)*Y = E.
        //
        //  Hermitian(A) is the Complex.Conjugateugate transpose of A.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where hermitian(U)*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve hermitian(U)*W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (i = 0; i < n; i++)
        {
            z[i] = new Complex(0.0, 0.0);
        }

        for (k = 1; k <= n; k++)
        {
            if (typeMethods.zabs1(z[k - 1]) != 0.0)
            {
                ek = typeMethods.zsign1(ek, -z[k - 1]);
            }

            if (typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) < typeMethods.zabs1(ek - z[k - 1]))
            {
                s = typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) / typeMethods.zabs1(ek - z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ek = new Complex(s, 0.0) * ek;
            }

            Complex wk  = ek - z[k - 1];
            Complex wkm = -ek - z[k - 1];
            s = typeMethods.zabs1(wk);
            double sm = typeMethods.zabs1(wkm);

            if (typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) != 0.0)
            {
                wk  /= Complex.Conjugate(a[k - 1 + (k - 1) * lda]);
                wkm /= Complex.Conjugate(a[k - 1 + (k - 1) * lda]);
            }
            else
            {
                wk  = new Complex(1.0, 0.0);
                wkm = new Complex(1.0, 0.0);
            }

            for (j = k + 1; j <= n; j++)
            {
                sm       += typeMethods.zabs1(z[j - 1] + wkm * Complex.Conjugate(a[k - 1 + (j - 1) * lda]));
                z[j - 1] += wk * Complex.Conjugate(a[k - 1 + (j - 1) * lda]);
                s        += typeMethods.zabs1(z[j - 1]);
            }

            if (s < sm)
            {
                t  = wkm - wk;
                wk = wkm;
                for (j = k + 1; j <= n; j++)
                {
                    z[j - 1] += t * Complex.Conjugate(a[k - 1 + (j - 1) * lda]);
                }
            }

            z[k - 1] = wk;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        //
        //  Solve hermitian(L) * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (k < n)
            {
                z[k - 1] += BLAS1Z.zdotc(n - k, a, 1, z, 1, xIndex: +k + (k - 1) * lda, yIndex: +k);
            }

            if (1.0 < typeMethods.zabs1(z[k - 1]))
            {
                s = 1.0 / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
            }

            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);

        double ynorm = 1.0;

        //
        //  Solve L * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;

            if (k < n)
            {
                BLAS1Z.zaxpy(n - k, t, a, 1, ref z, 1, xIndex: +k + (k - 1) * lda, yIndex: +k);
            }

            if (!(1.0 < typeMethods.zabs1(z[k - 1])))
            {
                continue;
            }

            s = 1.0 / typeMethods.zabs1(z[k - 1]);
            BLAS1Z.zdscal(n, s, ref z, 1);
            ynorm = s * ynorm;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;
        //
        //  Solve U * Z = V.
        //
        for (k = n; 1 <= k; k--)
        {
            if (typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) < typeMethods.zabs1(z[k - 1]))
            {
                s = typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            if (typeMethods.zabs1(a[k - 1 + (k - 1) * lda]) != 0.0)
            {
                z[k - 1] /= a[k - 1 + (k - 1) * lda];
            }
            else
            {
                z[k - 1] = new Complex(1.0, 0.0);
            }

            t = -z[k - 1];
            BLAS1Z.zaxpy(k - 1, t, a, 1, ref z, 1, xIndex: +0 + (k - 1) * lda);
        }

        //
        //  Make ZNORM = 1.
        //
        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Ejemplo n.º 3
0
    public static double zppco(ref Complex[] ap, int n, ref int info)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZPPCO factors a complex <double> hermitian positive definite matrix.
    //
    //  Discussion:
    //
    //    The routine also estimates the condition of the matrix.
    //
    //    The matrix is stored in packed form.
    //
    //    If RCOND is not needed, ZPPFA is slightly faster.
    //
    //    To solve A*X = B, follow ZPPCO by ZPPSL.
    //
    //    To compute inverse(A)*C, follow ZPPCO by ZPPSL.
    //
    //    To compute determinant(A), follow ZPPCO by ZPPDI.
    //
    //    To compute inverse(A), follow ZPPCO by ZPPDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, complex <double> AP[N*(N+1)/2]; on input, the packed form of a
    //    hermitian matrix.  The columns of the upper triangle are stored
    //    sequentially in a one-dimensional array.  On output, an upper
    //    triangular matrix R, stored in packed form, so that A = hermitian(R) * R.
    //    If INFO != 0 , the factorization is not complete.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, double ZPPCO, an estimate of RCOND, the reciprocal condition of
    //    the matrix.  For the system A*X = B, relative perturbations in A and B
    //    of size EPSILON may cause relative perturbations in X of size
    //    (EPSILON/RCOND).  If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    //    Output, int *INFO.
    //    0, for normal return.
    //    K, signals an error condition.  The leading minor of order K is not
    //    positive definite.
    //
    //  Local Parameters:
    //
    //    Local, complex <double> Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    {
        int     j;
        int     k;
        double  rcond;
        double  s;
        Complex t;

        //
        //  Find norm of A.
        //
        Complex[] z = new Complex [n];

        int j1 = 1;

        for (j = 1; j <= n; j++)
        {
            z[j - 1] = new Complex(BLAS1Z.dzasum(j, ap, 1, index: +j1 - 1), 0.0);
            int ij = j1;
            j1 += j;

            int i;
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] = new Complex(z[i - 1].Real + typeMethods.zabs1(ap[ij - 1]), 0.0);
                ij      += 1;
            }
        }

        double anorm = 0.0;

        for (j = 0; j < n; j++)
        {
            anorm = Math.Max(anorm, z[j].Real);
        }

        //
        //  Factor.
        //
        info = ZPPFA.zppfa(ref ap, n);

        if (info != 0)
        {
            rcond = 0.0;
            return(rcond);
        }

        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where hermitian(R)*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve hermitian(R)*W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (j = 0; j < n; j++)
        {
            z[j] = new Complex(0.0, 0.0);
        }

        int kk = 0;

        for (k = 1; k <= n; k++)
        {
            kk += k;

            if (typeMethods.zabs1(z[k - 1]) != 0.0)
            {
                ek = typeMethods.zsign1(ek, -z[k - 1]);
            }

            if (ap[kk - 1].Real < typeMethods.zabs1(ek - z[k - 1]))
            {
                s = ap[kk - 1].Real / typeMethods.zabs1(ek - z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ek = new Complex(s, 0.0) * ek;
            }

            Complex wk  = ek - z[k - 1];
            Complex wkm = -ek - z[k - 1];
            s = typeMethods.zabs1(wk);
            double sm = typeMethods.zabs1(wkm);
            wk  /= ap[kk - 1];
            wkm /= ap[kk - 1];
            int kj = kk + k;

            if (k + 1 <= n)
            {
                for (j = k + 1; j <= n; j++)
                {
                    sm       += typeMethods.zabs1(z[j - 1] + wkm * Complex.Conjugate(ap[kj - 1]));
                    z[j - 1] += wk * Complex.Conjugate(ap[kj - 1]);
                    s        += typeMethods.zabs1(z[j - 1]);
                    kj       += j;
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    kj = kk + k;
                    for (j = k + 1; j <= n; j++)
                    {
                        z[j - 1] += t * Complex.Conjugate(ap[kj - 1]);
                        kj       += j;
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        //
        //  Solve R * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (ap[kk - 1].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = ap[kk - 1].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
            }

            z[k - 1] /= ap[kk - 1];
            kk       -= k;
            t         = -z[k - 1];
            BLAS1Z.zaxpy(k - 1, t, ap, 1, ref z, 1, xIndex: +kk);
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        double ynorm = 1.0;

        //
        //  Solve hermitian(R) * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            z[k - 1] -= BLAS1Z.zdotc(k - 1, ap, 1, z, 1, xIndex: +kk);
            kk       += k;

            if (ap[kk - 1].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = ap[kk - 1].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            z[k - 1] /= ap[kk - 1];
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;
        //
        //  Solve R * Z = V.
        //
        for (k = n; 1 <= k; k--)
        {
            if (ap[kk - 1].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = ap[kk - 1].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            z[k - 1] /= ap[kk - 1];
            kk       -= k;
            t         = -z[k - 1];
            BLAS1Z.zaxpy(k - 1, t, ap, 1, ref z, 1, xIndex: +kk);
        }

        //
        //  Make ZNORM = 1.
        //
        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }
        return(rcond);
    }
Ejemplo n.º 4
0
    public static double zsico(ref Complex[] a, int lda, int n, ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZSICO factors a complex symmetric matrix.
    //
    //  Discussion:
    //
    //    The factorization is done by symmetric pivoting.
    //
    //    The routine also estimates the condition of the matrix.
    //
    //    If RCOND is not needed, ZSIFA is slightly faster.
    //
    //    To solve A*X = B, follow ZSICO by ZSISL.
    //
    //    To compute inverse(A)*C, follow ZSICO by ZSISL.
    //
    //    To compute inverse(A), follow ZSICO by ZSIDI.
    //
    //    To compute determinant(A), follow ZSICO by ZSIDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex A[LDA*N]; on input, the symmetric matrix to be
    //    factored.  On output, a block diagonal matrix and the multipliers which
    //    were used to obtain it.  The factorization can be written A = U*D*U'
    //    where U is a product of permutation and unit upper triangular matrices,
    //    U' is the transpose of U, and D is block diagonal with 1 by 1 and
    //    2 by 2 blocks.  Only the diagonal and upper triangle are used.
    //
    //    Input, int LDA, the leading dimension of A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, double ZSICO, an estimate of RCOND, the reciprocal condition of
    //    the matrix.  For the system A*X = B, relative perturbations in A and B
    //    of size EPSILON may cause relative perturbations in X of size
    //    (EPSILON/RCOND).  If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    //  Local Parameters:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    {
        Complex ak;
        Complex akm1;
        Complex bk;
        Complex bkm1;
        Complex denom;
        int     j;
        int     kp;
        int     kps;
        int     ks;
        double  rcond;
        double  s;
        Complex t;

        Complex[] z = new Complex [n];
        //
        //  Find norm of A using only upper half.
        //
        for (j = 1; j <= n; j++)
        {
            z[j - 1] = new Complex(BLAS1Z.dzasum(j, a, 1, index: +0 + (j - 1) * lda), 0.0);
            int i;
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] =
                    new Complex(z[i - 1].Real + typeMethods.zabs1(a[i - 1 + (j - 1) * lda]), 0.0);
            }
        }

        double anorm = 0.0;

        for (j = 0; j < n; j++)
        {
            anorm = Math.Max(anorm, z[j].Real);
        }

        //
        //  Factor.
        //
        ZSIFA.zsifa(ref a, lda, n, ref ipvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where U*D*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve U*D*W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (j = 0; j < n; j++)
        {
            z[j] = new Complex(0.0, 0.0);
        }

        int k = n;

        while (0 < k)
        {
            ks = ipvt[k - 1] switch
            {
Ejemplo n.º 5
0
    public static double zpbco(ref Complex[] abd, int lda, int n, int m, ref int info)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZPBCO factors a Complex hermitian positive definite band matrix.
    //
    //  Discussion:
    //
    //    The routine also estimates the condition number of the matrix.
    //
    //    If RCOND is not needed, ZPBFA is slightly faster.
    //
    //    To solve A*X = B, follow ZPBCO by ZPBSL.
    //
    //    To compute inverse(A)*C, follow ZPBCO by ZPBSL.
    //
    //    To compute determinant(A), follow ZPBCO by ZPBDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex ABD[LDA*N]; on input, the matrix to be factored.
    //    The columns of the upper triangle are stored in the columns of ABD,
    //    and the diagonals of the upper triangle are stored in the rows of ABD.
    //    On output, an upper triangular matrix R, stored in band form, so that
    //    A = hermitian(R) * R.  If INFO != 0, the factorization is not complete.
    //
    //    Input, int LDA, the leading dimension of ABD.
    //    LDA must be at least M+1.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int M, the number of diagonals above the main diagonal.
    //    0 <= M < N.
    //
    //    Output, double ZPBCO, an estimate of RCOND, the reciprocal condition of
    //    the matrix.  For the system A*X = B, relative perturbations in A and B
    //    of size EPSILON may cause relative perturbations in X of size
    //    (EPSILON/RCOND).  If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    //    Output, int *INFO.
    //    0, for normal return.
    //    K, signals an error condition.  The leading minor of order K is not
    //    positive definite.
    //
    //  Local Parameter:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If A is singular to working precision, then Z is
    //    an approximate null vector in the sense that
    //    norm ( A * Z ) = RCOND * norm ( A ) * norm ( Z ).
    //    If INFO != 0, Z is unchanged.
    //
    {
        int     i;
        int     j;
        int     k;
        int     la;
        int     lb;
        int     lm;
        double  rcond;
        double  s;
        Complex t;

        //
        //  Find the norm of A.
        //
        Complex[] z = new Complex [n];

        for (j = 1; j <= n; j++)
        {
            int l  = Math.Min(j, m + 1);
            int mu = Math.Max(m + 2 - j, 1);
            z[j - 1] = new Complex(BLAS1Z.dzasum(l, abd, 1, index: +mu - 1 + (j - 1) * lda), 0.0);
            k        = j - l;

            for (i = mu; i <= m; i++)
            {
                k       += 1;
                z[k - 1] = new Complex(z[k - 1].Real
                                       + typeMethods.zabs1(abd[i - 1 + (j - 1) * lda]), 0.0);
            }
        }

        double anorm = 0.0;

        for (j = 0; j < n; j++)
        {
            anorm = Math.Max(anorm, z[j].Real);
        }

        //
        //  Factor.
        //
        info = ZPBFA.zpbfa(ref abd, lda, n, m);

        if (info != 0)
        {
            rcond = 0.0;
            return(rcond);
        }

        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where hermitian(R)*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve hermitian(R)*W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (i = 0; i < n; i++)
        {
            z[i] = new Complex(0.0, 0.0);
        }

        for (k = 1; k <= n; k++)
        {
            if (typeMethods.zabs1(z[k - 1]) != 0.0)
            {
                ek = typeMethods.zsign1(ek, -z[k - 1]);
            }

            if (abd[m + (k - 1) * lda].Real < typeMethods.zabs1(ek - z[k - 1]))
            {
                s = abd[m + (k - 1) * lda].Real / typeMethods.zabs1(ek - z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ek = new Complex(s, 0.0) * ek;
            }

            Complex wk  = ek - z[k - 1];
            Complex wkm = -ek - z[k - 1];
            s = typeMethods.zabs1(wk);
            double sm = typeMethods.zabs1(wkm);
            wk  /= abd[m + (k - 1) * lda];
            wkm /= abd[m + (k - 1) * lda];
            int j2 = Math.Min(k + m, n);
            i = m + 1;

            if (k + 1 <= j2)
            {
                for (j = k + 1; j <= j2; j++)
                {
                    i        -= 1;
                    sm       += typeMethods.zabs1(z[j - 1] + wkm * Complex.Conjugate(abd[i - 1 + (j - 1) * lda]));
                    z[j - 1] += wk * Complex.Conjugate(abd[i - 1 + (j - 1) * lda]);
                    s        += typeMethods.zabs1(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    i  = m + 1;
                    for (j = k + 1; j <= j2; j++)
                    {
                        i        -= 1;
                        z[j - 1] += t * Complex.Conjugate(abd[i - 1 + (j - 1) * lda]);
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        //
        //  Solve R * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (abd[m + (k - 1) * lda].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
            lm        = Math.Min(k - 1, m);
            la        = m + 1 - lm;
            lb        = k - lm;
            t         = -z[k - 1];
            BLAS1Z.zaxpy(lm, t, abd, 1, ref z, 1, xIndex: +la - 1 + (k - 1) * lda, yIndex: +lb - 1);
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        double ynorm = 1.0;

        //
        //  Solve hermitian(R)*V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            lm        = Math.Min(k - 1, m);
            la        = m + 1 - lm;
            lb        = k - lm;
            z[k - 1] -= BLAS1Z.zdotc(lm, abd, 1, z, 1, xIndex: +la - 1 + (k - 1) * lda, yIndex: +lb - 1);

            if (abd[m + (k - 1) * lda].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;
        //
        //  Solve R * Z = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (abd[m + (k - 1) * lda].Real < typeMethods.zabs1(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda].Real / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
            lm        = Math.Min(k - 1, m);
            la        = m + 1 - lm;
            lb        = k - lm;
            t         = -z[k - 1];
            BLAS1Z.zaxpy(lm, t, abd, 1, ref z, 1, xIndex: +la - 1 + (k - 1) * lda, yIndex: +lb - 1);
        }

        //
        //  Make ZNORM = 1.
        //
        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Ejemplo n.º 6
0
    public static double zgbco(ref Complex[] abd, int lda, int n, int ml, int mu,
                               ref int[] ipvt)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZGBCO factors a complex band matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, ZGBFA is slightly faster.
    //
    //    To solve A*X = B, follow ZGBCO by ZGBSL.
    //
    //    To compute inverse(A)*C, follow ZGBCO by ZGBSL.
    //
    //    To compute determinant(A), follow ZGBCO by ZGBDI.
    //
    //  Band storage:
    //
    //    If A is a band matrix, the following program segment
    //    will set up the input.
    //
    //      ml = (band width below the diagonal)
    //      mu = (band width above the diagonal)
    //      m = ml + mu + 1
    //      do j = 1, n
    //        i1 = max ( 1, j - mu )
    //        i2 = min ( n, j + ml )
    //        do i = i1, i2
    //          k = i - j + m
    //          abd(k,j) = a(i,j)
    //        }
    //      }
    //
    //    This uses rows ML+1 through 2*ML+MU+1 of ABD.
    //    In addition, the first ML rows in ABD are used for
    //    elements generated during the triangularization.
    //    The total number of rows needed in ABD is 2*ML+MU+1.
    //    The ML+MU by ML+MU upper left triangle and the
    //    ML by ML lower right triangle are not referenced.
    //
    //  Example:
    //
    //    If the original matrix A is
    //
    //      11 12 13  0  0  0
    //      21 22 23 24  0  0
    //       0 32 33 34 35  0
    //       0  0 43 44 45 46
    //       0  0  0 54 55 56
    //       0  0  0  0 65 66
    //
    //     Then N = 6, ML = 1, MU = 2, 5 <= LDA and ABD should contain
    //
    //       *  *  *  +  +  +
    //       *  * 13 24 35 46
    //       * 12 23 34 45 56
    //      11 22 33 44 55 66
    //      21 32 43 54 65  *
    //
    //    * = not used,
    //    + = used for pivoting.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input/output, Complex ABD[LDA*N], on input, contains the matrix in
    //    band storage.  The columns of the matrix are stored in the columns
    //    of ABD and the diagonals of the matrix are stored in rows ML+1
    //    through 2*ML+MU+1 of ABD.  On output, an upper triangular matrix
    //    in band storage and the multipliers which were used to obtain it.
    //    The factorization can be written A = L*U where L is a product of
    //    permutation and unit lower triangular matrices and U is upper triangular.
    //
    //    Input, int LDA, the leading dimension of ABD.
    //    LDA must be at least 2*ML+MU+1.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int ML, the number of diagonals below the main diagonal.
    //    0 <= ML < N.
    //
    //    Input, int MU, the number of diagonals above the main diagonal.
    //    0 <= MU < N.
    //    More efficient if ML <= MU.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, double ZGBCO, an estimate of the reciprocal condition RCOND of A.
    //    For the system A*X = B, relative perturbations in A and B of size
    //    epsilon may cause relative perturbations in X of size (EPSILON/RCOND).
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate
    //    underflows.
    //
    //  Local Parameters:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm ( A * Z ) = RCOND * norm ( A ) * norm ( Z ).
    //
    {
        int     j;
        int     k;
        int     lm;
        double  rcond;
        double  s;
        Complex t;

        Complex[] z = new Complex [n];
        //
        //  Compute 1-norm of A.
        //
        double anorm = 0.0;
        int    l     = ml + 1;
        int    is_   = l + mu;

        for (j = 1; j <= n; j++)
        {
            anorm = Math.Max(anorm, BLAS1Z.dzasum(l, abd, 1, index: +is_ - 1 + (j - 1) * lda));

            if (ml + 1 < is_)
            {
                is_ -= 1;
            }

            if (j <= mu)
            {
                l += 1;
            }

            if (n - ml <= j)
            {
                l -= 1;
            }
        }

        //
        //  Factor
        //
        ZGBFA.zgbfa(ref abd, lda, n, ml, mu, ref ipvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and hermitian(A)*Y = E.
        //
        //  Hermitian(A) is the Complex.Conjugateugate transpose of A.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where hermitian(U)*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve hermitian(U) * W = E.
        //
        Complex ek = new(1.0, 0.0);

        for (j = 1; j <= n; j++)
        {
            z[j - 1] = new Complex(0.0, 0.0);
        }

        int m  = ml + mu + 1;
        int ju = 0;

        for (k = 1; k <= n; k++)
        {
            if (typeMethods.zabs1(z[k - 1]) != 0.0)
            {
                ek = typeMethods.zsign1(ek, -z[k - 1]);
            }

            if (typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) < typeMethods.zabs1(ek - z[k - 1]))
            {
                s = typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) / typeMethods.zabs1(ek - z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ek = new Complex(s, 0.0) * ek;
            }

            Complex wk  = ek - z[k - 1];
            Complex wkm = -ek - z[k - 1];
            s = typeMethods.zabs1(wk);
            double sm = typeMethods.zabs1(wkm);

            if (typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) != 0.0)
            {
                wk  /= Complex.Conjugate(abd[m - 1 + (k - 1) * lda]);
                wkm /= Complex.Conjugate(abd[m - 1 + (k - 1) * lda]);
            }
            else
            {
                wk  = new Complex(1.0, 0.0);
                wkm = new Complex(1.0, 0.0);
            }

            ju = Math.Min(Math.Max(ju, mu + ipvt[k - 1]), n);
            int mm = m;

            if (k + 1 <= ju)
            {
                for (j = k + 1; j <= ju; j++)
                {
                    mm       -= 1;
                    sm       += typeMethods.zabs1(z[j - 1] + wkm * Complex.Conjugate(abd[mm - 1 + (j - 1) * lda]));
                    z[j - 1] += wk * Complex.Conjugate(abd[mm - 1 + (j - 1) * lda]);
                    s        += typeMethods.zabs1(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    mm = m;
                    for (j = k + 1; j <= ju; j++)
                    {
                        mm       -= 1;
                        z[j - 1] += t * Complex.Conjugate(abd[mm - 1 + (j - 1) * lda]);
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        //
        //  Solve hermitian(L) * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            lm = Math.Min(ml, n - k);

            if (k < n)
            {
                z[k - 1] += BLAS1Z.zdotc(lm, abd, 1, z, 1, xIndex: +m + (k - 1) * lda, yIndex: +k);
            }

            if (1.0 < typeMethods.zabs1(z[k - 1]))
            {
                s = 1.0 / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
            }

            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        double ynorm = 1.0;

        //
        //  Solve L * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;

            lm = Math.Min(ml, n - k);

            if (k < n)
            {
                BLAS1Z.zaxpy(lm, t, abd, 1, ref z, 1, xIndex: +m + (k - 1) * lda, yIndex: +k);
            }

            if (!(1.0 < typeMethods.zabs1(z[k - 1])))
            {
                continue;
            }

            s = 1.0 / typeMethods.zabs1(z[k - 1]);
            BLAS1Z.zdscal(n, s, ref z, 1);
            ynorm = s * ynorm;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;
        //
        //  Solve U * Z = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) < typeMethods.zabs1(z[k - 1]))
            {
                s = typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            if (typeMethods.zabs1(abd[m - 1 + (k - 1) * lda]) != 0.0)
            {
                z[k - 1] /= abd[m - 1 + (k - 1) * lda];
            }
            else
            {
                z[k - 1] = new Complex(1.0, 0.0);
            }

            lm = Math.Min(k, m) - 1;
            int la = m - lm;
            int lz = k - lm;
            t = -z[k - 1];
            BLAS1Z.zaxpy(lm, t, abd, 1, ref z, 1, xIndex: +la - 1 + (k - 1) * lda, yIndex: +lz - 1);
        }

        //
        //  Make ZNORM = 1.
        //
        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Ejemplo n.º 7
0
    public static double ztrco(Complex[] t, int ldt, int n, int job)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    ZTRCO estimates the condition of a complex triangular matrix.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    21 May 2006
    //
    //  Author:
    //
    //    C++ version by John Burkardt
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //
    //  Parameters:
    //
    //    Input, Complex T[LDT*N], the triangular matrix.  The zero
    //    elements of the matrix are not referenced, and the corresponding
    //    elements of the array can be used to store other information.
    //
    //    Input, int LDT, the leading dimension of T.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int JOB, indicates if matrix is upper or lower triangular.
    //    0, lower triangular.
    //    nonzero, upper triangular.
    //
    //    Output, double ZTRCO, an estimate of RCOND, the reciprocal condition of T.
    //    For the system T*X = B, relative perturbations in T and B of size
    //    EPSILON may cause relative perturbations in X of size (EPSILON/RCOND).
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0
    //    is true, then T may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate
    //    underflows.
    //
    //  Local Parameters:
    //
    //    Workspace, Complex Z[N], a work vector whose contents are usually
    //    unimportant.  If T is close to a singular matrix, then Z is
    //    an approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    {
        int     i;
        int     i1;
        int     j;
        int     k;
        int     kk;
        double  rcond;
        double  s;
        Complex w;

        bool lower = job == 0;
        //
        //  Compute 1-norm of T
        //
        double tnorm = 0.0;

        for (j = 1; j <= n; j++)
        {
            int l;
            switch (lower)
            {
            case true:
                l  = n + 1 - j;
                i1 = j;
                break;

            default:
                l  = j;
                i1 = 1;
                break;
            }

            tnorm = Math.Max(tnorm,
                             BLAS1Z.dzasum(l, t, 1, index: +i1 - 1 + (j - 1) * ldt));
        }

        //
        //  RCOND = 1/(norm(T)*(estimate of norm(inverse(T)))).
        //
        //  Estimate = norm(Z)/norm(Y) where T*Z = Y and hermitian(T)*Y = E.
        //
        //  Hermitian(T) is the Complex.Conjugateugate transpose of T.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of Y.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve hermitian(T)*Y = E.
        //
        Complex ek = new(1.0, 0.0);

        Complex[] z = new Complex[n];
        for (i = 0; i < n; i++)
        {
            z[i] = new Complex(0.0, 0.0);
        }

        for (kk = 1; kk <= n; kk++)
        {
            k = lower switch
            {
                true => n + 1 - kk,
                _ => kk
            };

            if (typeMethods.zabs1(z[k - 1]) != 0.0)
            {
                ek = typeMethods.zsign1(ek, -z[k - 1]);
            }

            if (typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) < typeMethods.zabs1(ek - z[k - 1]))
            {
                s = typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) / typeMethods.zabs1(ek - z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ek = new Complex(s, 0.0) * ek;
            }

            Complex wk  = ek - z[k - 1];
            Complex wkm = -ek - z[k - 1];
            s = typeMethods.zabs1(wk);
            double sm = typeMethods.zabs1(wkm);

            if (typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) != 0.0)
            {
                wk  /= Complex.Conjugate(t[k - 1 + (k - 1) * ldt]);
                wkm /= Complex.Conjugate(t[k - 1 + (k - 1) * ldt]);
            }
            else
            {
                wk  = new Complex(1.0, 0.0);
                wkm = new Complex(1.0, 0.0);
            }

            if (kk != n)
            {
                int j2;
                int j1;
                switch (lower)
                {
                case true:
                    j1 = 1;
                    j2 = k - 1;
                    break;

                default:
                    j1 = k + 1;
                    j2 = n;
                    break;
                }

                for (j = j1; j <= j2; j++)
                {
                    sm       += typeMethods.zabs1(z[j - 1] + wkm * Complex.Conjugate(t[k - 1 + (j - 1) * ldt]));
                    z[j - 1] += wk * Complex.Conjugate(t[k - 1 + (j - 1) * ldt]);
                    s        += typeMethods.zabs1(z[j - 1]);
                }

                if (s < sm)
                {
                    w  = wkm - wk;
                    wk = wkm;
                    for (j = j1; j <= j2; j++)
                    {
                        z[j - 1] += w * Complex.Conjugate(t[k - 1 + (j - 1) * ldt]);
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        double ynorm = 1.0;

        //
        //  Solve T*Z = Y.
        //
        for (kk = 1; kk <= n; kk++)
        {
            k = lower switch
            {
                true => kk,
                _ => n + 1 - kk
            };

            if (typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) < typeMethods.zabs1(z[k - 1]))
            {
                s = typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) / typeMethods.zabs1(z[k - 1]);
                BLAS1Z.zdscal(n, s, ref z, 1);
                ynorm = s * ynorm;
            }

            if (typeMethods.zabs1(t[k - 1 + (k - 1) * ldt]) != 0.0)
            {
                z[k - 1] /= t[k - 1 + (k - 1) * ldt];
            }
            else
            {
                z[k - 1] = new Complex(1.0, 0.0);
            }

            i1 = lower switch
            {
                true => k + 1,
                _ => 1
            };

            if (kk >= n)
            {
                continue;
            }

            w = -z[k - 1];
            BLAS1Z.zaxpy(n - kk, w, t, 1, ref z, 1, xIndex: +i1 - 1 + (k - 1) * ldt, yIndex: +i1 - 1);
        }

        //
        //  Make ZNORM = 1.
        //
        s = 1.0 / BLAS1Z.dzasum(n, z, 1);
        BLAS1Z.zdscal(n, s, ref z, 1);
        ynorm = s * ynorm;

        if (tnorm != 0.0)
        {
            rcond = ynorm / tnorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
}