Beispiel #1
0
	//***********************************************************************
	// Generates a random number with the specified number of bits such
	// that gcd(number, this) = 1
	//***********************************************************************

	public BigInteger genCoPrime(int bits, Random rand)
	{
		bool done = false;
		BigInteger result = new BigInteger();

		while(!done)
		{
			result.genRandomBits(bits, rand);
			//Console.WriteLine(result.ToString(16));

			// gcd test
			BigInteger g = result.gcd(this);
			if(g.dataLength == 1 && g.data[0] == 1)
				done = true;
		}

		return result;
	}
Beispiel #2
0
	private bool LucasStrongTestHelper(BigInteger thisVal)
	{
		// Do the test (selects D based on Selfridge)
		// Let D be the first element of the sequence
		// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
		// Let P = 1, Q = (1-D) / 4

		long D = 5, sign = -1, dCount = 0;
		bool done = false;

		while(!done)
		{
			int Jresult = BigInteger.Jacobi(D, thisVal);

			if(Jresult == -1)
				done = true;    // J(D, this) = 1
			else
			{
				if(Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
					return false;

				if(dCount == 20)
				{
					// check for square
					BigInteger root = thisVal.sqrt();
					if(root * root == thisVal)
						return false;
				}

				//Console.WriteLine(D);
				D = (Math.Abs(D) + 2) * sign;
				sign = -sign;
			}
			dCount++;
		}

		long Q = (1 - D) >> 2;

		/*
				Console.WriteLine("D = " + D);
				Console.WriteLine("Q = " + Q);
				Console.WriteLine("(n,D) = " + thisVal.gcd(D));
				Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
				Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
				*/

		BigInteger p_add1 = thisVal + 1;
		int s = 0;

		for(int index = 0; index < p_add1.dataLength; index++)
		{
			uint mask = 0x01;

			for(int i = 0; i < 32; i++)
			{
				if((p_add1.data[index] & mask) != 0)
				{
					index = p_add1.dataLength;      // to break the outer loop
					break;
				}
				mask <<= 1;
				s++;
			}
		}

		BigInteger t = p_add1 >> s;

		// calculate constant = b^(2k) / m
		// for Barrett Reduction
		BigInteger constant = new BigInteger();

		int nLen = thisVal.dataLength << 1;
		constant.data[nLen] = 0x00000001;
		constant.dataLength = nLen + 1;

		constant = constant / thisVal;

		BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
		bool isPrime = false;

		if((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
			(lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
		{
			// u(t) = 0 or V(t) = 0
			isPrime = true;
		}

		for(int i = 1; i < s; i++)
		{
			if(!isPrime)
			{
				// doubling of index
				lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
				lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

				//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

				if((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
					isPrime = true;
			}

			lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
		}


		if(isPrime)     // additional checks for composite numbers
		{
			// If n is prime and gcd(n, Q) == 1, then
			// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

			BigInteger g = thisVal.gcd(Q);
			if(g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
			{
				if((lucas[2].data[maxLength-1] & 0x80000000) != 0)
					lucas[2] += thisVal;

				BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
				if((temp.data[maxLength-1] & 0x80000000) != 0)
					temp += thisVal;

				if(lucas[2] != temp)
					isPrime = false;
			}
		}

		return isPrime;
	}
Beispiel #3
0
	//***********************************************************************
	// Probabilistic prime test based on Rabin-Miller's
	//
	// for any p > 0 with p - 1 = 2^s * t
	//
	// p is probably prime (strong pseudoprime) if for any a < p,
	// 1) a^t mod p = 1 or
	// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
	//
	// Otherwise, p is composite.
	//
	// Returns
	// -------
	// True if "this" is a strong pseudoprime to randomly chosen
	// bases.  The number of chosen bases is given by the "confidence"
	// parameter.
	//
	// False if "this" is definitely NOT prime.
	//
	//***********************************************************************

	public bool RabinMillerTest(int confidence)
	{
		BigInteger thisVal;
		if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
			thisVal = -this;
		else
			thisVal = this;

		if(thisVal.dataLength == 1)
		{
			// test small numbers
			if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
				return false;
			else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
				return true;
		}

		if((thisVal.data[0] & 0x1) == 0)     // even numbers
			return false;


		// calculate values of s and t
		BigInteger p_sub1 = thisVal - (new BigInteger(1));
		int s = 0;

		for(int index = 0; index < p_sub1.dataLength; index++)
		{
			uint mask = 0x01;

			for(int i = 0; i < 32; i++)
			{
				if((p_sub1.data[index] & mask) != 0)
				{
					index = p_sub1.dataLength;      // to break the outer loop
					break;
				}
				mask <<= 1;
				s++;
			}
		}

		BigInteger t = p_sub1 >> s;

		int bits = thisVal.bitCount();
		BigInteger a = new BigInteger();
		Random rand = new Random();

		for(int round = 0; round < confidence; round++)
		{
			bool done = false;

			while(!done)		// generate a < n
			{
				int testBits = 0;

				// make sure "a" has at least 2 bits
				while(testBits < 2)
					testBits = (int)(rand.NextDouble() * bits);

				a.genRandomBits(testBits, rand);

				int byteLen = a.dataLength;

				// make sure "a" is not 0
				if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
					done = true;
			}

			// check whether a factor exists (fix for version 1.03)
			BigInteger gcdTest = a.gcd(thisVal);
			if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
				return false;

			BigInteger b = a.modPow(t, thisVal);

			/*
						Console.WriteLine("a = " + a.ToString(10));
						Console.WriteLine("b = " + b.ToString(10));
						Console.WriteLine("t = " + t.ToString(10));
						Console.WriteLine("s = " + s);
						*/

			bool result = false;

			if(b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
				result = true;

			for(int j = 0; result == false && j < s; j++)
			{
				if(b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
				{
					result = true;
					break;
				}

				b = (b * b) % thisVal;
			}

			if(result == false)
				return false;
		}
		return true;
	}
Beispiel #4
0
	//***********************************************************************
	// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
	//
	// p is probably prime if for any a < p (a is not multiple of p),
	// a^((p-1)/2) mod p = J(a, p)
	//
	// where J is the Jacobi symbol.
	//
	// Otherwise, p is composite.
	//
	// Returns
	// -------
	// True if "this" is a Euler pseudoprime to randomly chosen
	// bases.  The number of chosen bases is given by the "confidence"
	// parameter.
	//
	// False if "this" is definitely NOT prime.
	//
	//***********************************************************************

	public bool SolovayStrassenTest(int confidence)
	{
		BigInteger thisVal;
		if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
			thisVal = -this;
		else
			thisVal = this;

		if(thisVal.dataLength == 1)
		{
			// test small numbers
			if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
				return false;
			else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
				return true;
		}

		if((thisVal.data[0] & 0x1) == 0)     // even numbers
			return false;


		int bits = thisVal.bitCount();
		BigInteger a = new BigInteger();
		BigInteger p_sub1 = thisVal - 1;
		BigInteger p_sub1_shift = p_sub1 >> 1;

		Random rand = new Random();

		for(int round = 0; round < confidence; round++)
		{
			bool done = false;

			while(!done)		// generate a < n
			{
				int testBits = 0;

				// make sure "a" has at least 2 bits
				while(testBits < 2)
					testBits = (int)(rand.NextDouble() * bits);

				a.genRandomBits(testBits, rand);

				int byteLen = a.dataLength;

				// make sure "a" is not 0
				if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
					done = true;
			}

			// check whether a factor exists (fix for version 1.03)
			BigInteger gcdTest = a.gcd(thisVal);
			if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
				return false;

			// calculate a^((p-1)/2) mod p

			BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
			if(expResult == p_sub1)
				expResult = -1;

			// calculate Jacobi symbol
			BigInteger jacob = Jacobi(a, thisVal);

			//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
			//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

			// if they are different then it is not prime
			if(expResult != jacob)
				return false;
		}

		return true;
	}
Beispiel #5
0
	//***********************************************************************
	// Probabilistic prime test based on Fermat's little theorem
	//
	// for any a < p (p does not divide a) if
	//      a^(p-1) mod p != 1 then p is not prime.
	//
	// Otherwise, p is probably prime (pseudoprime to the chosen base).
	//
	// Returns
	// -------
	// True if "this" is a pseudoprime to randomly chosen
	// bases.  The number of chosen bases is given by the "confidence"
	// parameter.
	//
	// False if "this" is definitely NOT prime.
	//
	// Note - this method is fast but fails for Carmichael numbers except
	// when the randomly chosen base is a factor of the number.
	//
	//***********************************************************************

	public bool FermatLittleTest(int confidence)
	{
		BigInteger thisVal;
		if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
			thisVal = -this;
		else
			thisVal = this;

		if(thisVal.dataLength == 1)
		{
			// test small numbers
			if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
				return false;
			else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
				return true;
		}

		if((thisVal.data[0] & 0x1) == 0)     // even numbers
			return false;

		int bits = thisVal.bitCount();
		BigInteger a = new BigInteger();
		BigInteger p_sub1 = thisVal - (new BigInteger(1));
		Random rand = new Random();

		for(int round = 0; round < confidence; round++)
		{
			bool done = false;

			while(!done)		// generate a < n
			{
				int testBits = 0;

				// make sure "a" has at least 2 bits
				while(testBits < 2)
					testBits = (int)(rand.NextDouble() * bits);

				a.genRandomBits(testBits, rand);

				int byteLen = a.dataLength;

				// make sure "a" is not 0
				if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
					done = true;
			}

			// check whether a factor exists (fix for version 1.03)
			BigInteger gcdTest = a.gcd(thisVal);
			if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
				return false;

			// calculate a^(p-1) mod p
			BigInteger expResult = a.modPow(p_sub1, thisVal);

			int resultLen = expResult.dataLength;

			// is NOT prime is a^(p-1) mod p != 1

			if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
			{
				//Console.WriteLine("a = " + a.ToString());
				return false;
			}
		}

		return true;
	}