virtual protected void ComputeSubMeshes()
        {
            Submeshes = new List <DSubmesh3>();
            KeyToMesh = new Dictionary <object, DSubmesh3>();

            SpinLock data_lock = new SpinLock();

            gParallel.ForEach(TriangleSetKeys, (obj) => {
                DSubmesh3 submesh = new DSubmesh3(Mesh, TriangleSetF(obj), 0);

                bool taken = false;
                data_lock.Enter(ref taken);
                Submeshes.Add(submesh);
                KeyToMesh[obj] = submesh;
                data_lock.Exit();
            });
        }
Beispiel #2
0
        // TODO: parallel version, cache tri normals
        void Compute_FaceAvg_AreaWeighted()
        {
            int NV = Mesh.MaxVertexID;

            if (NV != Normals.size)
            {
                Normals.resize(NV);
            }

            for (int i = 0; i < NV; ++i)
            {
                Normals[i] = Vector3d.Zero;
            }

            var Normals_lock = new SpinLock();

            gParallel.ForEach(Mesh.TriangleIndices(), (ti) =>
            {
                Index3i tri = Mesh.GetTriangle(ti);
                Vector3d va = Mesh.GetVertex(tri.a);
                Vector3d vb = Mesh.GetVertex(tri.b);
                Vector3d vc = Mesh.GetVertex(tri.c);
                Vector3d N  = MathUtil.Normal(ref va, ref vb, ref vc);
                double a    = MathUtil.Area(ref va, ref vb, ref vc);
                bool taken  = false;
                Normals_lock.Enter(ref taken);
                Normals[tri.a] += a * N;
                Normals[tri.b] += a * N;
                Normals[tri.c] += a * N;
                Normals_lock.Exit();
            });

            gParallel.BlockStartEnd(0, NV - 1, (vi_start, vi_end) =>
            {
                for (int vi = vi_start; vi <= vi_end; vi++)
                {
                    if (Normals[vi].LengthSquared > MathUtil.ZeroTolerancef)
                    {
                        Normals[vi] = Normals[vi].Normalized;
                    }
                }
            });
        }
Beispiel #3
0
        }   // end make_level_set_3

        void make_level_set3_parallel(Vector3f origin, float dx,
                                      int ni, int nj, int nk,
                                      DenseGrid3f distances, int exact_band)
        {
            distances.resize(ni, nj, nk);
            distances.assign((float)((ni + nj + nk) * dx)); // upper bound on distance

            // closest triangle id for each grid cell
            DenseGrid3i closest_tri = new DenseGrid3i(ni, nj, nk, -1);

            // intersection_count(i,j,k) is # of tri intersections in (i-1,i]x{j}x{k}
            DenseGrid3i intersection_count = new DenseGrid3i(ni, nj, nk, 0);

            if (DebugPrint)
            {
                System.Console.WriteLine("start");
            }

            double ox = (double)origin[0], oy = (double)origin[1], oz = (double)origin[2];
            double invdx = 1.0 / dx;

            // Compute narrow-band distances. For each triangle, we find its grid-coord-bbox,
            // and compute exact distances within that box.

            // To compute in parallel, we need to safely update grid cells. Current strategy is
            // to use a spinlock to control access to grid. Partitioning the grid into a few regions,
            // each w/ a separate spinlock, improves performance somewhat. Have also tried having a
            // separate spinlock per-row, this resulted in a few-percent performance improvement.
            // Also tried pre-sorting triangles into disjoint regions, this did not help much except
            // on "perfect" cases like a sphere.
            int wi = ni / 2, wj = nj / 2, wk = nk / 2;

            SpinLock[] grid_locks = new SpinLock[8];

            bool abort            = false;

            gParallel.ForEach(Mesh.TriangleIndices(), (tid) => {
                if (tid % 100 == 0)
                {
                    abort = CancelF();
                }
                if (abort)
                {
                    return;
                }

                Vector3d xp = Vector3d.Zero, xq = Vector3d.Zero, xr = Vector3d.Zero;
                Mesh.GetTriVertices(tid, ref xp, ref xq, ref xr);

                // real ijk coordinates of xp/xq/xr
                double fip = (xp[0] - ox) * invdx, fjp = (xp[1] - oy) * invdx, fkp = (xp[2] - oz) * invdx;
                double fiq = (xq[0] - ox) * invdx, fjq = (xq[1] - oy) * invdx, fkq = (xq[2] - oz) * invdx;
                double fir = (xr[0] - ox) * invdx, fjr = (xr[1] - oy) * invdx, fkr = (xr[2] - oz) * invdx;

                // clamped integer bounding box of triangle plus exact-band
                int i0 = MathUtil.Clamp(((int)MathUtil.Min(fip, fiq, fir)) - exact_band, 0, ni - 1);
                int i1 = MathUtil.Clamp(((int)MathUtil.Max(fip, fiq, fir)) + exact_band + 1, 0, ni - 1);
                int j0 = MathUtil.Clamp(((int)MathUtil.Min(fjp, fjq, fjr)) - exact_band, 0, nj - 1);
                int j1 = MathUtil.Clamp(((int)MathUtil.Max(fjp, fjq, fjr)) + exact_band + 1, 0, nj - 1);
                int k0 = MathUtil.Clamp(((int)MathUtil.Min(fkp, fkq, fkr)) - exact_band, 0, nk - 1);
                int k1 = MathUtil.Clamp(((int)MathUtil.Max(fkp, fkq, fkr)) + exact_band + 1, 0, nk - 1);

                // compute distance for each tri inside this bounding box
                // note: this can be very conservative if the triangle is large and on diagonal to grid axes
                for (int k = k0; k <= k1; ++k)
                {
                    for (int j = j0; j <= j1; ++j)
                    {
                        int base_idx = ((j < wj) ? 0 : 1) | ((k < wk) ? 0 : 2);    // construct index into spinlocks array

                        for (int i = i0; i <= i1; ++i)
                        {
                            Vector3d gx = new Vector3d((float)i * dx + origin[0], (float)j * dx + origin[1], (float)k * dx + origin[2]);
                            float d     = (float)point_triangle_distance(ref gx, ref xp, ref xq, ref xr);
                            if (d < distances[i, j, k])
                            {
                                int lock_idx = base_idx | ((i < wi) ? 0 : 4);
                                bool taken   = false;
                                grid_locks[lock_idx].Enter(ref taken);
                                if (d < distances[i, j, k])        // have to check again in case grid changed in another thread...
                                {
                                    distances[i, j, k]   = d;
                                    closest_tri[i, j, k] = tid;
                                }
                                grid_locks[lock_idx].Exit();
                            }
                        }
                    }
                }
            });

            if (CancelF())
            {
                return;
            }

            if (ComputeSigns == true)
            {
                if (DebugPrint)
                {
                    System.Console.WriteLine("done narrow-band");
                }

                compute_intersections(origin, dx, ni, nj, nk, intersection_count);
                if (CancelF())
                {
                    return;
                }

                if (DebugPrint)
                {
                    System.Console.WriteLine("done intersections");
                }

                if (ComputeMode == ComputeModes.FullGrid)
                {
                    // and now we fill in the rest of the distances with fast sweeping
                    for (int pass = 0; pass < 2; ++pass)
                    {
                        sweep_pass(origin, dx, distances, closest_tri);
                        if (CancelF())
                        {
                            return;
                        }
                    }
                    if (DebugPrint)
                    {
                        System.Console.WriteLine("done sweeping");
                    }
                }
                else
                {
                    // nothing!
                    if (DebugPrint)
                    {
                        System.Console.WriteLine("skipped sweeping");
                    }
                }

                if (DebugPrint)
                {
                    System.Console.WriteLine("done sweeping");
                }

                // then figure out signs (inside/outside) from intersection counts
                compute_signs(ni, nj, nk, distances, intersection_count);
                if (CancelF())
                {
                    return;
                }

                if (WantIntersectionsGrid)
                {
                    intersections_grid = intersection_count;
                }

                if (DebugPrint)
                {
                    System.Console.WriteLine("done signs");
                }
            }

            if (WantClosestTriGrid)
            {
                closest_tri_grid = closest_tri;
            }
        }   // end make_level_set_3
Beispiel #4
0
 public SafeListBuilder()
 {
     List     = new List <T>();
     spinlock = new SpinLock();
 }