Beispiel #1
0
        /// <summary>
        /// Compute the square root of this element and return the result in a new GF2nElement
        /// </summary>
        ///
        /// <returns>Returns <c>this^1/2</c> (newly created)</returns>
        public override GF2nElement SquareRoot()
        {
            GF2nONBElement result = new GF2nONBElement(this);

            result.SquareRootThis();
            return(result);
        }
Beispiel #2
0
        /// <summary>
        /// Enlarges the size of this PolynomialGF2n to <c>k</c> + 1
        /// </summary>
        ///
        /// <param name="K">The new maximum degree</param>
        public void Enlarge(int K)
        {
            if (K <= _size)
            {
                return;
            }

            int i;

            GF2nElement[] res = new GF2nElement[K];
            Array.Copy(_coeff, 0, res, 0, _size);
            GF2nField f = _coeff[0].GetField();

            if (_coeff[0] is GF2nPolynomialElement)
            {
                for (i = _size; i < K; i++)
                {
                    res[i] = GF2nPolynomialElement.Zero((GF2nPolynomialField)f);
                }
            }
            else if (_coeff[0] is GF2nONBElement)
            {
                for (i = _size; i < K; i++)
                {
                    res[i] = GF2nONBElement.Zero((GF2nONBField)f);
                }
            }

            _size  = K;
            _coeff = res;
        }
Beispiel #3
0
        /// <summary>
        /// Compute the sum of this element and <c>Addend</c>.
        /// </summary>
        ///
        /// <param name="Addend">The addend</param>
        ///
        /// <returns>Returns <c>this + other</c></returns>
        public override IGFElement Add(IGFElement Addend)
        {
            GF2nONBElement result = new GF2nONBElement(this);

            result.AddToThis(Addend);
            return(result);
        }
Beispiel #4
0
        /// <summary>
        /// Compute the product of this element and <c>factor</c>
        /// </summary>
        ///
        /// <param name="Factor">he factor</param>
        ///
        /// <returns>Returns <c>this * factor</c> </returns>
        public override IGFElement Multiply(IGFElement Factor)
        {
            GF2nONBElement result = new GF2nONBElement(this);

            result.MultiplyThisBy(Factor);
            return(result);
        }
Beispiel #5
0
        /// <summary>
        /// Compute <c>this</c> element + 1
        /// </summary>
        ///
        /// <returns>Returns <c>this</c> + 1</returns>
        public override GF2nElement Increase()
        {
            GF2nONBElement result = new GF2nONBElement(this);

            result.IncreaseThis();
            return(result);
        }
Beispiel #6
0
        /// <summary>
        /// Shifts left <c>this</c> by <c>N</c> and stores the result in <c>this</c> PolynomialGF2n
        /// </summary>
        ///
        /// <param name="N">The amount the amount to shift the coefficients</param>
        public void ShiftThisLeft(int N)
        {
            if (N > 0)
            {
                int       i;
                int       oldSize = _size;
                GF2nField f       = _coeff[0].GetField();
                Enlarge(_size + N);

                for (i = oldSize - 1; i >= 0; i--)
                {
                    _coeff[i + N] = _coeff[i];
                }

                if (_coeff[0] is GF2nPolynomialElement)
                {
                    for (i = N - 1; i >= 0; i--)
                    {
                        _coeff[i] = GF2nPolynomialElement.Zero((GF2nPolynomialField)f);
                    }
                }
                else if (_coeff[0] is GF2nONBElement)
                {
                    for (i = N - 1; i >= 0; i--)
                    {
                        _coeff[i] = GF2nONBElement.Zero((GF2nONBField)f);
                    }
                }
            }
        }
Beispiel #7
0
        /// <summary>
        /// Compute the multiplicative inverse of this element
        /// </summary>
        ///
        /// <returns>Returns <c>this^-1</c> (newly created)</returns>
        public override IGFElement Invert()
        {
            GF2nONBElement result = new GF2nONBElement(this);

            result.InvertThis();

            return(result);
        }
Beispiel #8
0
 /// <summary>
 /// Copy the field values from another GF2nONBElement instance
 /// </summary>
 ///
 /// <param name="Gf2n">The GF2nONBElement to copy</param>
 public GF2nONBElement(GF2nONBElement Gf2n)
 {
     m_Field  = Gf2n.m_Field;
     m_Degree = m_Field.Degree;
     m_Length = ((GF2nONBField)m_Field).GetONBLength();
     m_Bit    = ((GF2nONBField)m_Field).GetONBBit();
     m_Pol    = new long[m_Length];
     Assign(Gf2n.GetElement());
 }
Beispiel #9
0
 /// <summary>
 /// Copy the field values from another GF2nONBElement instance
 /// </summary>
 ///
 /// <param name="Gf2n">The GF2nONBElement to copy</param>
 public GF2nONBElement(GF2nONBElement Gf2n)
 {
     mField   = Gf2n.mField;
     mDegree  = mField.Degree;
     _mLength = ((GF2nONBField)mField).GetONBLength();
     _mBit    = ((GF2nONBField)mField).GetONBBit();
     _mPol    = new long[_mLength];
     Assign(Gf2n.GetElement());
 }
Beispiel #10
0
        /// <summary>
        /// Computes a random root of the given polynomial
        /// </summary>
        ///
        /// <param name="P">A polynomial</param>
        ///
        /// <returns>A random root of the polynomial</returns>
        public override GF2nElement RandomRoot(GF2Polynomial P)
        {
            // We are in B1!!!
            GF2nPolynomial c;
            GF2nPolynomial ut;
            GF2nElement    u;
            GF2nPolynomial h;
            int            hDegree;
            // 1. Set g(t) <- f(t)
            GF2nPolynomial g       = new GF2nPolynomial(P, this);
            int            gDegree = g.Degree;
            int            i;

            // 2. while deg(g) > 1
            while (gDegree > 1)
            {
                do
                {
                    // 2.1 choose random u (element of) GF(2^m)
                    u  = new GF2nONBElement(this, m_secRand);
                    ut = new GF2nPolynomial(2, GF2nONBElement.Zero(this));
                    // 2.2 Set c(t) <- ut
                    ut.Set(1, u);
                    c = new GF2nPolynomial(ut);
                    // 2.3 For i from 1 to m-1 do
                    for (i = 1; i <= DegreeN - 1; i++)
                    {
                        // 2.3.1 c(t) <- (c(t)^2 + ut) mod g(t)
                        c = c.MultiplyAndReduce(c, g);
                        c = c.Add(ut);
                    }
                    // 2.4 set h(t) <- GCD(c(t), g(t))
                    h = c.Gcd(g);
                    // 2.5 if h(t) is constant or deg(g) = deg(h) then go to
                    // step 2.1
                    hDegree = h.Degree;
                    gDegree = g.Degree;
                }while ((hDegree == 0) || (hDegree == gDegree));

                // 2.6 If 2deg(h) > deg(g) then set g(t) <- g(t)/h(t) ...
                if ((hDegree << 1) > gDegree)
                {
                    g = g.Quotient(h);
                }
                else // ... else g(t) <- h(t)
                {
                    g = new GF2nPolynomial(h);
                }

                gDegree = g.Degree;
            }
            // 3. Output g(0)
            return(g.At(0));
        }
Beispiel #11
0
        /// <summary>
        /// Compare this element with another object
        /// </summary>
        ///
        /// <param name="Obj">The object for comprison</param>
        ///
        /// <returns>Returns <c>true</c> if the two objects are equal, <c>false</c> otherwise</returns>
        public override bool Equals(Object Obj)
        {
            if (Obj == null || !(Obj is GF2nONBElement))
            {
                return(false);
            }

            GF2nONBElement otherElem = (GF2nONBElement)Obj;

            for (int i = 0; i < m_Length; i++)
            {
                if (m_Pol[i] != otherElem.m_Pol[i])
                {
                    return(false);
                }
            }

            return(true);
        }
Beispiel #12
0
        /// <summary>
        /// Multiplicatively invert of this element (overwrite <c>this</c>)
        /// </summary>
        public void InvertThis()
        {
            if (IsZero())
            {
                throw new ArithmeticException();
            }

            int r = 31; // m_Degree kann nur 31 Bits lang sein!!!

            // Bitlaenge von m_Degree:
            for (bool found = false; !found && r >= 0; r--)
            {
                if (((m_Degree - 1) & _mBitmask[r]) != 0)
                {
                    found = true;
                }
            }
            r++;

            GF2nElement m = Zero((GF2nONBField)m_Field);
            GF2nElement n = new GF2nONBElement(this);
            int         k = 1;

            for (int i = r - 1; i >= 0; i--)
            {
                m = (GF2nElement)n.Clone();
                for (int j = 1; j <= k; j++)
                {
                    m.SquareThis();
                }

                n.MultiplyThisBy(m);

                k <<= 1;
                if (((m_Degree - 1) & _mBitmask[i]) != 0)
                {
                    n.SquareThis();
                    n.MultiplyThisBy(this);
                    k++;
                }
            }
            n.SquareThis();
        }
Beispiel #13
0
        /// <summary>
        /// Creates a new PolynomialGF2n from the given Bitstring <c>G</c> over the GF2nField <c>B1</c>
        /// </summary>
        ///
        /// <param name="G">The Bitstring to use</param>
        /// <param name="B1">The field</param>
        public GF2nPolynomial(GF2Polynomial G, GF2nField B1)
        {
            _size  = B1.Degree + 1;
            _coeff = new GF2nElement[_size];
            int i;

            if (B1 is GF2nONBField)
            {
                for (i = 0; i < _size; i++)
                {
                    if (G.TestBit(i))
                    {
                        _coeff[i] = GF2nONBElement.One((GF2nONBField)B1);
                    }
                    else
                    {
                        _coeff[i] = GF2nONBElement.Zero((GF2nONBField)B1);
                    }
                }
            }
            else if (B1 is GF2nPolynomialField)
            {
                for (i = 0; i < _size; i++)
                {
                    if (G.TestBit(i))
                    {
                        _coeff[i] = GF2nPolynomialElement.One((GF2nPolynomialField)B1);
                    }
                    else
                    {
                        _coeff[i] = GF2nPolynomialElement.Zero((GF2nPolynomialField)B1);
                    }
                }
            }
            else
            {
                throw new ArgumentException("GF2nPolynomial: PolynomialGF2n(Bitstring, GF2nField): B1 must be an instance of GF2nONBField or GF2nPolynomialField!");
            }
        }
 /// <summary>
 /// Copy the field values from another GF2nONBElement instance
 /// </summary>
 /// 
 /// <param name="Gf2n">The GF2nONBElement to copy</param>
 public GF2nONBElement(GF2nONBElement Gf2n)
 {
     mField = Gf2n.mField;
     mDegree = mField.Degree;
     _mLength = ((GF2nONBField)mField).GetONBLength();
     _mBit = ((GF2nONBField)mField).GetONBBit();
     _mPol = new long[_mLength];
     Assign(Gf2n.GetElement());
 }
        /// <summary>
        /// Computes the change-of-basis matrix for basis conversion according to 1363.
        /// The result is stored in the lists fields and matrices.
        /// </summary>
        ///
        /// <param name="B1">The GF2nField to convert to</param>
        public override void ComputeCOBMatrix(GF2nField B1)
        {
            // we are in B0 here!
            if (DegreeN != B1.Degree)
            {
                throw new ArgumentException("GF2nPolynomialField.computeCOBMatrix: B1 has a different degree and thus cannot be coverted to!");
            }

            if (B1 is GF2nONBField)
            {
                // speedup (calculation is done in PolynomialElements instead of ONB)
                B1.ComputeCOBMatrix(this);
                return;
            }

            int i, j;

            GF2nElement[] gamma;
            GF2nElement   u;

            GF2Polynomial[] COBMatrix = new GF2Polynomial[DegreeN];

            for (i = 0; i < DegreeN; i++)
            {
                COBMatrix[i] = new GF2Polynomial(DegreeN);
            }

            // find Random Root
            do
            {
                // u is in representation according to B1
                u = B1.RandomRoot(FieldPoly);
            }while (u.IsZero());

            // build gamma matrix by multiplying by u
            if (u is GF2nONBElement)
            {
                gamma = new GF2nONBElement[DegreeN];
                gamma[DegreeN - 1] = GF2nONBElement.One((GF2nONBField)B1);
            }
            else
            {
                gamma = new GF2nPolynomialElement[DegreeN];
                gamma[DegreeN - 1] = GF2nPolynomialElement.One((GF2nPolynomialField)B1);
            }
            gamma[DegreeN - 2] = u;
            for (i = DegreeN - 3; i >= 0; i--)
            {
                gamma[i] = (GF2nElement)gamma[i + 1].Multiply(u);
            }

            if (B1 is GF2nONBField)
            {
                // convert horizontal gamma matrix by vertical Bitstrings
                for (i = 0; i < DegreeN; i++)
                {
                    for (j = 0; j < DegreeN; j++)
                    {
                        // TODO remember: ONB treats its Bits in reverse order !!!
                        if (gamma[i].TestBit(DegreeN - j - 1))
                        {
                            COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1);
                        }
                    }
                }
            }
            else
            {
                // convert horizontal gamma matrix by vertical Bitstrings
                for (i = 0; i < DegreeN; i++)
                {
                    for (j = 0; j < DegreeN; j++)
                    {
                        if (gamma[i].TestBit(j))
                        {
                            COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1);
                        }
                    }
                }
            }

            // store field and matrix for further use
            Fields.Add(B1);
            Matrices.Add(COBMatrix);
            // store field and inverse matrix for further use in B1
            B1.Fields.Add(this);
            B1.Matrices.Add(InvertMatrix(COBMatrix));
        }
 /// <summary>
 /// Compute the sum of this element and <c>Addend</c>.
 /// </summary>
 /// 
 /// <param name="Addend">The addend</param>
 /// 
 /// <returns>Returns <c>this + other</c></returns>
 public override IGFElement Add(IGFElement Addend)
 {
     GF2nONBElement result = new GF2nONBElement(this);
     result.AddToThis(Addend);
     return result;
 }
        /// <summary>
        /// Multiplicatively invert of this element (overwrite <c>this</c>)
        /// </summary>
        public void InvertThis()
        {
            if (IsZero())
                throw new ArithmeticException();

            int r = 31; // mDegree kann nur 31 Bits lang sein!!!

            // Bitlaenge von mDegree:
            for (bool found = false; !found && r >= 0; r--)
            {
                if (((mDegree - 1) & _mBitmask[r]) != 0)
                    found = true;
            }
            r++;

            GF2nElement m = Zero((GF2nONBField)mField);
            GF2nElement n = new GF2nONBElement(this);
            int k = 1;

            for (int i = r - 1; i >= 0; i--)
            {
                m = (GF2nElement)n.Clone();
                for (int j = 1; j <= k; j++)
                    m.SquareThis();

                n.MultiplyThisBy(m);

                k <<= 1;
                if (((mDegree - 1) & _mBitmask[i]) != 0)
                {
                    n.SquareThis();
                    n.MultiplyThisBy(this);
                    k++;
                }
            }
            n.SquareThis();
        }
        /// <summary>
        /// Compute the multiplicative inverse of this element
        /// </summary>
        /// 
        /// <returns>Returns <c>this^-1</c> (newly created)</returns>
        public override IGFElement Invert()
        {
            GF2nONBElement result = new GF2nONBElement(this);
            result.InvertThis();

            return result;
        }
 /// <summary>
 /// Compute <c>this</c> element + 1
 /// </summary>
 /// 
 /// <returns>Returns <c>this</c> + 1</returns>
 public override GF2nElement Increase()
 {
     GF2nONBElement result = new GF2nONBElement(this);
     result.IncreaseThis();
     return result;
 }
 /// <summary>
 /// Compute the product of this element and <c>factor</c>
 /// </summary>
 /// 
 /// <param name="Factor">he factor</param>
 /// 
 /// <returns>Returns <c>this * factor</c> </returns>
 public override IGFElement Multiply(IGFElement Factor)
 {
     GF2nONBElement result = new GF2nONBElement(this);
     result.MultiplyThisBy(Factor);
     return result;
 }
Beispiel #21
0
        /// <summary>
        /// Converts the given element in representation according to this field to a new element in
        /// representation according to B1 using the change-of-basis matrix calculated by computeCOBMatrix.
        /// </summary>
        ///
        /// <param name="Elem">The GF2nElement to convert</param>
        /// <param name="Basis">The basis to convert <c>Elem</c> to</param>
        ///
        /// <returns>Returns <c>Elem</c> converted to a new element representation according to <c>basis</c></returns>
        public GF2nElement Convert(GF2nElement Elem, GF2nField Basis)
        {
            if (Basis == this)
            {
                return((GF2nElement)Elem.Clone());
            }
            if (FieldPoly.Equals(Basis.FieldPoly))
            {
                return((GF2nElement)Elem.Clone());
            }
            if (DegreeN != Basis.DegreeN)
            {
                throw new Exception("GF2nField.Convert: B1 has a different degree and thus cannot be coverted to!");
            }

            int i;

            GF2Polynomial[] COBMatrix;
            i = Fields.IndexOf(Basis);

            if (i == -1)
            {
                ComputeCOBMatrix(Basis);
                i = Fields.IndexOf(Basis);
            }
            COBMatrix = (GF2Polynomial[])Matrices[i];

            GF2nElement elemCopy = (GF2nElement)Elem.Clone();

            if (elemCopy is GF2nONBElement)
            {
                ((GF2nONBElement)elemCopy).ReverseOrder();
            }

            GF2Polynomial bs = new GF2Polynomial(DegreeN, elemCopy.ToFlexiBigInt());

            bs.ExpandN(DegreeN);
            GF2Polynomial result = new GF2Polynomial(DegreeN);

            for (i = 0; i < DegreeN; i++)
            {
                if (bs.VectorMult(COBMatrix[i]))
                {
                    result.SetBit(DegreeN - 1 - i);
                }
            }

            if (Basis is GF2nPolynomialField)
            {
                return(new GF2nPolynomialElement((GF2nPolynomialField)Basis, result));
            }
            else if (Basis is GF2nONBField)
            {
                GF2nONBElement res = new GF2nONBElement((GF2nONBField)Basis, result.ToFlexiBigInt());
                res.ReverseOrder();

                return(res);
            }
            else
            {
                throw new Exception("GF2nField.convert: B1 must be an instance of GF2nPolynomialField or GF2nONBField!");
            }
        }
 /// <summary>
 /// Compute the square root of this element and return the result in a new GF2nElement
 /// </summary>
 /// 
 /// <returns>Returns <c>this^1/2</c> (newly created)</returns>
 public override GF2nElement SquareRoot()
 {
     GF2nONBElement result = new GF2nONBElement(this);
     result.SquareRootThis();
     return result;
 }
Beispiel #23
0
        /// <summary>
        /// Converts the given element in representation according to this field to a new element in 
        /// representation according to B1 using the change-of-basis matrix calculated by computeCOBMatrix.
        /// </summary>
        /// 
        /// <param name="Elem">The GF2nElement to convert</param>
        /// <param name="Basis">The basis to convert <c>Elem</c> to</param>
        /// 
        /// <returns>Returns <c>Elem</c> converted to a new element representation according to <c>basis</c></returns>
        public GF2nElement Convert(GF2nElement Elem, GF2nField Basis)
        {
            if (Basis == this)
                return (GF2nElement)Elem.Clone();
            if (FieldPoly.Equals(Basis.FieldPoly))
                return (GF2nElement)Elem.Clone();
            if (DegreeN != Basis.DegreeN)
                throw new Exception("GF2nField.Convert: B1 has a different degree and thus cannot be coverted to!");

            int i;
            GF2Polynomial[] COBMatrix;
            i = Fields.IndexOf(Basis);

            if (i == -1)
            {
                ComputeCOBMatrix(Basis);
                i = Fields.IndexOf(Basis);
            }
            COBMatrix = (GF2Polynomial[])Matrices[i];

            GF2nElement elemCopy = (GF2nElement)Elem.Clone();
            if (elemCopy is GF2nONBElement)
                ((GF2nONBElement)elemCopy).ReverseOrder();

            GF2Polynomial bs = new GF2Polynomial(DegreeN, elemCopy.ToFlexiBigInt());
            bs.ExpandN(DegreeN);
            GF2Polynomial result = new GF2Polynomial(DegreeN);
            for (i = 0; i < DegreeN; i++)
            {
                if (bs.VectorMult(COBMatrix[i]))
                    result.SetBit(DegreeN - 1 - i);
            }

            if (Basis is GF2nPolynomialField)
            {
                return new GF2nPolynomialElement((GF2nPolynomialField)Basis, result);
            }
            else if (Basis is GF2nONBField)
            {
                GF2nONBElement res = new GF2nONBElement((GF2nONBField)Basis, result.ToFlexiBigInt());
                res.ReverseOrder();

                return res;
            }
            else
            {
                throw new Exception("GF2nField.convert: B1 must be an instance of GF2nPolynomialField or GF2nONBField!");
            }
        }
        /// <summary>
        /// Computes the change-of-basis matrix for basis conversion according to 1363.
        /// The result is stored in the lists fields and matrices.
        /// </summary>
        /// 
        /// <param name="B1">The GF2nField to convert to</param>
        public override void ComputeCOBMatrix(GF2nField B1)
        {
            // we are in B0 here!
            if (DegreeN != B1.Degree)
                throw new ArgumentException("GF2nPolynomialField.computeCOBMatrix: B1 has a different degree and thus cannot be coverted to!");

            if (B1 is GF2nONBField)
            {
                // speedup (calculation is done in PolynomialElements instead of ONB)
                B1.ComputeCOBMatrix(this);
                return;
            }

            int i, j;
            GF2nElement[] gamma;
            GF2nElement u;
            GF2Polynomial[] COBMatrix = new GF2Polynomial[DegreeN];

            for (i = 0; i < DegreeN; i++)
                COBMatrix[i] = new GF2Polynomial(DegreeN);

            // find Random Root
            do
            {
                // u is in representation according to B1
                u = B1.RandomRoot(FieldPoly);
            }
            while (u.IsZero());

            // build gamma matrix by multiplying by u
            if (u is GF2nONBElement)
            {
                gamma = new GF2nONBElement[DegreeN];
                gamma[DegreeN - 1] = GF2nONBElement.One((GF2nONBField)B1);
            }
            else
            {
                gamma = new GF2nPolynomialElement[DegreeN];
                gamma[DegreeN - 1] = GF2nPolynomialElement.One((GF2nPolynomialField)B1);
            }
            gamma[DegreeN - 2] = u;
            for (i = DegreeN - 3; i >= 0; i--)
                gamma[i] = (GF2nElement)gamma[i + 1].Multiply(u);

            if (B1 is GF2nONBField)
            {
                // convert horizontal gamma matrix by vertical Bitstrings
                for (i = 0; i < DegreeN; i++)
                {
                    for (j = 0; j < DegreeN; j++)
                    {
                        // TODO remember: ONB treats its Bits in reverse order !!!
                        if (gamma[i].TestBit(DegreeN - j - 1))
                            COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1);
                    }
                }
            }
            else
            {
                // convert horizontal gamma matrix by vertical Bitstrings
                for (i = 0; i < DegreeN; i++)
                {
                    for (j = 0; j < DegreeN; j++)
                    {
                        if (gamma[i].TestBit(j))
                            COBMatrix[DegreeN - j - 1].SetBit(DegreeN - i - 1);
                    }
                }
            }

            // store field and matrix for further use
            Fields.Add(B1);
            Matrices.Add(COBMatrix);
            // store field and inverse matrix for further use in B1
            B1.Fields.Add(this);
            B1.Matrices.Add(InvertMatrix(COBMatrix));
        }
Beispiel #25
0
        /// <summary>
        /// Computes a random root of the given polynomial
        /// </summary>
        /// 
        /// <param name="P">A polynomial</param>
        /// 
        /// <returns>A random root of the polynomial</returns>
        public override GF2nElement RandomRoot(GF2Polynomial P)
        {
            // We are in B1!!!
            GF2nPolynomial c;
            GF2nPolynomial ut;
            GF2nElement u;
            GF2nPolynomial h;
            int hDegree;
            // 1. Set g(t) <- f(t)
            GF2nPolynomial g = new GF2nPolynomial(P, this);
            int gDegree = g.Degree;
            int i;

            // 2. while deg(g) > 1
            while (gDegree > 1)
            {
                do
                {
                    // 2.1 choose random u (element of) GF(2^m)
                    u = new GF2nONBElement(this, _secRand);
                    ut = new GF2nPolynomial(2, GF2nONBElement.Zero(this));
                    // 2.2 Set c(t) <- ut
                    ut.Set(1, u);
                    c = new GF2nPolynomial(ut);
                    // 2.3 For i from 1 to m-1 do
                    for (i = 1; i <= DegreeN - 1; i++)
                    {
                        // 2.3.1 c(t) <- (c(t)^2 + ut) mod g(t)
                        c = c.MultiplyAndReduce(c, g);
                        c = c.Add(ut);
                    }
                    // 2.4 set h(t) <- GCD(c(t), g(t))
                    h = c.Gcd(g);
                    // 2.5 if h(t) is constant or deg(g) = deg(h) then go to
                    // step 2.1
                    hDegree = h.Degree;
                    gDegree = g.Degree;
                }
                while ((hDegree == 0) || (hDegree == gDegree));

                // 2.6 If 2deg(h) > deg(g) then set g(t) <- g(t)/h(t) ...
                if ((hDegree << 1) > gDegree)
                    g = g.Quotient(h);
                else // ... else g(t) <- h(t)
                    g = new GF2nPolynomial(h);

                gDegree = g.Degree;
            }
            // 3. Output g(0)
            return g.At(0);
        }