Beispiel #1
0
        private void FixedUpdate()
        {
            if (m_Target == null || !m_Driving)
            {
                // Car should not be moving,
                // use handbrake to stop
                m_CarController.Move(0, 0, -1f, 1f);
            }
            else
            {
                Vector3 fwd = transform.forward;
                if (m_Rigidbody.velocity.magnitude > m_CarController.MaxSpeed * 0.1f)
                {
                    fwd = m_Rigidbody.velocity;
                }

                float desiredSpeed = m_CarController.MaxSpeed;

                // now it's time to decide if we should be slowing down...
                switch (m_BrakeCondition)
                {
                case BrakeCondition.TargetDirectionDifference:
                {
                    // the car will brake according to the upcoming change in direction of the target. Useful for route-based AI, slowing for corners.

                    // check out the angle of our target compared to the current direction of the car
                    float approachingCornerAngle = Vector3.Angle(m_Target.forward, fwd);

                    // also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner angle
                    float spinningAngle = m_Rigidbody.angularVelocity.magnitude * m_CautiousAngularVelocityFactor;

                    // if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amount
                    float cautiousnessRequired = Mathf.InverseLerp(0, m_CautiousMaxAngle, Mathf.Max(spinningAngle, approachingCornerAngle));
                    desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed * m_CautiousSpeedFactor, cautiousnessRequired);
                    break;
                }

                case BrakeCondition.TargetDistance:
                {
                    // the car will brake as it approaches its target, regardless of the target's direction. Useful if you want the car to
                    // head for a stationary target and come to rest when it arrives there.

                    // check out the distance to target
                    Vector3 delta = m_Target.position - transform.position;
                    float   distanceCautiousFactor = Mathf.InverseLerp(m_CautiousMaxDistance, 0, delta.magnitude);

                    // also consider the current amount we're turning, multiplied up and then compared in the same way as an upcoming corner angle
                    float spinningAngle = m_Rigidbody.angularVelocity.magnitude * m_CautiousAngularVelocityFactor;

                    // if it's different to our current angle, we need to be cautious (i.e. slow down) a certain amount
                    float cautiousnessRequired = Mathf.Max(Mathf.InverseLerp(0, m_CautiousMaxAngle, spinningAngle), distanceCautiousFactor);
                    desiredSpeed = Mathf.Lerp(m_CarController.MaxSpeed, m_CarController.MaxSpeed * m_CautiousSpeedFactor, cautiousnessRequired);
                    break;
                }

                case BrakeCondition.NeverBrake:
                    break;
                }

                // Evasive action due to collision with other cars:

                // our target position starts off as the 'real' target position
                Vector3 offsetTargetPos = m_Target.position;

                // if are we currently taking evasive action to prevent being stuck against another car:
                if (Time.time < m_AvoidOtherCarTime)
                {
                    // slow down if necessary (if we were behind the other car when collision occured)
                    desiredSpeed *= m_AvoidOtherCarSlowdown;

                    // and veer towards the side of our path-to-target that is away from the other car
                    offsetTargetPos += m_Target.right * m_AvoidPathOffset;
                }
                else
                {
                    // no need for evasive action, we can just wander across the path-to-target in a random way,
                    // which can help prevent AI from seeming too uniform and robotic in their driving
                    offsetTargetPos += m_Target.right *
                                       (Mathf.PerlinNoise(Time.time * m_LateralWanderSpeed, m_RandomPerlin) * 2 - 1) *
                                       m_LateralWanderDistance;
                }

                // use different sensitivity depending on whether accelerating or braking:
                float accelBrakeSensitivity = (desiredSpeed < m_CarController.CurrentSpeed)
                                                  ? m_BrakeSensitivity
                                                  : m_AccelSensitivity;

                // decide the actual amount of accel/brake input to achieve desired speed.
                float accel = Mathf.Clamp((desiredSpeed - m_CarController.CurrentSpeed) * accelBrakeSensitivity, -1, 1);

                // add acceleration 'wander', which also prevents AI from seeming too uniform and robotic in their driving
                // i.e. increasing the accel wander amount can introduce jostling and bumps between AI cars in a race
                accel *= (1 - m_AccelWanderAmount) +
                         (Mathf.PerlinNoise(Time.time * m_AccelWanderSpeed, m_RandomPerlin) * m_AccelWanderAmount);

                // calculate the local-relative position of the target, to steer towards
                Vector3 localTarget = transform.InverseTransformPoint(offsetTargetPos);

                // work out the local angle towards the target
                float targetAngle = Mathf.Atan2(localTarget.x, localTarget.z) * Mathf.Rad2Deg;

                // get the amount of steering needed to aim the car towards the target
                float steer = Mathf.Clamp(targetAngle * m_SteerSensitivity, -1, 1) * Mathf.Sign(m_CarController.CurrentSpeed);

                // feed input to the car controller.
                m_CarController.Move(steer, accel, accel, 0f);

                // if appropriate, stop driving when we're close enough to the target.
                if (m_StopWhenTargetReached && localTarget.magnitude < m_ReachTargetThreshold)
                {
                    m_Driving = false;
                }
            }
        }
Beispiel #2
0
        /// <summary>
        /// Update.
        /// </summary>
        void Update()
        {
            // LR
            float h = 0;

            if (handleMode)
            {
                h = Input.GetAxis("Handle");
            }
            else if (keyboardMode)
            {
                h = CrossPlatformInputManager.GetAxis("Horizontal");
            }

            // Straight
            float v = 0;

            if (pedalMode)
            {
                v = Input.GetAxis("Accel") * (-1f);
                v = (v + 1) * 0.5f;
            }
            else if (keyboardMode)
            {
                v = CrossPlatformInputManager.GetAxis("Vertical");
            }

            // Brake
            float s = 0;

            if (pedalMode)
            {
                s = Input.GetAxis("Brake") * (-1f);
                s = (s + 1) * 0.5f;
            }
            else if (keyboardMode)
            {
                s = CrossPlatformInputManager.GetAxis("Space");
            }

            // Back = backtrigger + straight
            bool b = CrossPlatformInputManager.GetButton("BackTrigger");

            // Decide
            bool d = CrossPlatformInputManager.GetButtonUp("Decide");

            // Reset Orientation
            if (CrossPlatformInputManager.GetButton("Reset"))
            {
                InputTracking.Recenter();
            }

            if (s > 0)
            {
                m_Car.Move(h, 0, 0, s);                 // Stop
            }
            else
            {
                if (v == 0)
                {
                    m_Car.Move(h, 0, 0, 0);                     // Do nothing
                }
                else
                {
                    if (!b)
                    {
                        m_Car.Move(h, v, 0, 0);                         // Go
                    }
                    else
                    {
                        m_Car.Move(h, 0, (-1) * v, 0);                         // Back
                    }
                }
            }

            if (d && push)
            {
                push = false;
                GameController.instance.ChangeGameScene(gameObject.name);
                StartCoroutine(PreventSuccessionPush());
            }
        }