Beispiel #1
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="p"></param>
 /// <param name="ring"></param>
 /// <returns></returns>
 private Locations LocateInPolygonRing(ICoordinate p, ILinearRing ring)
 {
     // can this test be folded into IsPointInRing?
     if (CGAlgorithms.IsOnLine(p, ring.Coordinates))
     {
         return(Locations.Boundary);
     }
     if (CGAlgorithms.IsPointInRing(p, ring.Coordinates))
     {
         return(Locations.Interior);
     }
     return(Locations.Exterior);
 }
        /// <summary>
        ///
        /// </summary>
        /// <param name="p"></param>
        /// <param name="poly"></param>
        /// <returns></returns>
        public static bool ContainsPointInPolygon(ICoordinate p, IPolygon poly)
        {
            if (poly.IsEmpty)
            {
                return(false);
            }
            ILinearRing shell = (ILinearRing)poly.ExteriorRing;

            if (!CGAlgorithms.IsPointInRing(p, shell.Coordinates))
            {
                return(false);
            }
            // now test if the point lies in or on the holes
            for (int i = 0; i < poly.NumInteriorRings; i++)
            {
                ILinearRing hole = (ILinearRing)poly.GetInteriorRingN(i);
                if (CGAlgorithms.IsPointInRing(p, hole.Coordinates))
                {
                    return(false);
                }
            }
            return(true);
        }
Beispiel #3
0
        /// <summary>
        /// Uses a heuristic to reduce the number of points scanned to compute the hull.
        /// The heuristic is to find a polygon guaranteed to
        /// be in (or on) the hull, and eliminate all points inside it.
        /// A quadrilateral defined by the extremal points
        /// in the four orthogonal directions
        /// can be used, but even more inclusive is
        /// to use an octilateral defined by the points in the 8 cardinal directions.
        /// Note that even if the method used to determine the polygon vertices
        /// is not 100% robust, this does not affect the robustness of the convex hull.
        /// </summary>
        /// <param name="pts"></param>
        /// <returns></returns>
        private ICoordinate[] Reduce(ICoordinate[] pts)
        {
            ICoordinate[] polyPts = ComputeOctRing(inputPts);

            // unable to compute interior polygon for some reason
            if (polyPts == null)
            {
                return(inputPts);
            }

            // add points defining polygon
            SortedSet <ICoordinate> reducedSet = new SortedSet <ICoordinate>();

            for (int i = 0; i < polyPts.Length; i++)
            {
                reducedSet.Add(polyPts[i]);
            }

            /*
             * Add all unique points not in the interior poly.
             * CGAlgorithms.IsPointInRing is not defined for points actually on the ring,
             * but this doesn't matter since the points of the interior polygon
             * are forced to be in the reduced set.
             */
            for (int i = 0; i < inputPts.Length; i++)
            {
                if (!CGAlgorithms.IsPointInRing(inputPts[i], polyPts))
                {
                    reducedSet.Add(inputPts[i]);
                }
            }

            ICoordinate[] arr = new ICoordinate[reducedSet.Count];
            reducedSet.CopyTo(arr, 0);
            return(arr);
        }
 /// <summary>
 ///
 /// </summary>
 /// <param name="pt"></param>
 /// <returns></returns>
 public bool IsInside(ICoordinate pt)
 {
     return(CGAlgorithms.IsPointInRing(pt, pts));
 }