Beispiel #1
0
        //"t10k-labels.idx1-ubyte"  --> test labels file
        //"t10k-images.idx3-ubyte"  --> test images file
        //"train-labels-idx1-ubyte"  --> train labels file
        //"train-images-idx3-ubyte"  --> train images file
        public static Tuple <List <DigitImage>, List <DigitImage> > ReadData(string trainImagesFile, string trainLabelsFile, string testImagesFile, string testLabelsFile)
        {
            var Training = new List <DigitImage>();
            var Testing  = new List <DigitImage>();

            MNISTReader.ReadMNIST(trainImagesFile, trainLabelsFile, testImagesFile, testLabelsFile, Training, Testing);
            return(new Tuple <List <DigitImage>, List <DigitImage> >(Training, Testing));
        }
Beispiel #2
0
        static void InitNN(string[] args, StreamWriter writer)
        {
            var argsCounter = 1;

            writer.WriteLine("===============  Data             ===================");
            trainImagesFile = args[argsCounter++];
            writer.WriteLine("Training Image file: " + trainImagesFile);
            trainLabelsFile = args[argsCounter++];
            writer.WriteLine("Training Labels file: " + trainLabelsFile);
            testImagesFile = args[argsCounter++];
            writer.WriteLine("Testing Images file: " + testImagesFile);
            testLabelsFile = args[argsCounter++];
            writer.WriteLine("Testing Labels file: " + testLabelsFile);
            trainingSize = int.Parse(args[argsCounter++]);
            writer.WriteLine("Training Size: " + trainingSize);
            testingSize = int.Parse(args[argsCounter++]);
            writer.WriteLine("Testing Size: " + testingSize);
            writer.WriteLine("===============  Network Parameters ===================");
            batchSize = int.Parse(args[argsCounter++]);
            writer.WriteLine("Training Mini-Batch Size: " + batchSize);
            epochs = int.Parse(args[argsCounter++]);
            writer.WriteLine("Training Epochs: " + epochs);
            learningRate = double.Parse(args[argsCounter++]);
            writer.WriteLine("Learning Rate: " + learningRate);
            weightDecay = double.Parse(args[argsCounter++]);
            writer.WriteLine("Weight Decay: " + weightDecay);
            seed = int.Parse(args[argsCounter++]);
            writer.WriteLine("Random Seed: " + seed);
            problemType = args[argsCounter++];                //classification or regression
            writer.WriteLine("Problem Type: " + problemType);
            criterion = args[argsCounter++];                  //mse or softmax
            writer.WriteLine("Cost Criterion: " + criterion);
            epsilonLeaky = double.Parse(args[argsCounter++]); //threshold for Leaky ReLU
            writer.WriteLine("Leaky ReLU threshold: " + epsilonLeaky);
            epsilonGradientCheck = double.Parse(args[argsCounter++]);
            writer.WriteLine("Gradient Check Step: " + epsilonGradientCheck);
            gradientCheckThreshold = double.Parse(args[argsCounter++]);
            writer.WriteLine("Gradient Check Threshold: " + gradientCheckThreshold);
            L = int.Parse(args[argsCounter++]);
            layerFunctions = new string[L + 1];
            for (int l = 1; l <= L; l++)
            {
                layerFunctions[l] = args[argsCounter++];  //Sigmoid, Tanh, ReLU, or LReLU (Leaky ReLU) for now
                writer.WriteLine("Hidden Layer " + l + ": " + layerFunctions[l]);
            }

            writer.WriteLine("Number of Hidden Layers: " + L);
            layerSizes = new int[L + 2];
            W          = new Matrix[L + 1];
            dW         = new Matrix[L + 1];
            deltaW     = new Matrix[L + 1];
            b          = new Matrix[L + 1];
            db         = new Matrix[L + 1];
            deltab     = new Matrix[L + 1];
            errors     = new Matrix[L + 2];
            Loss       = new double[epochs];
            for (int i = 0; i <= L + 1; i++)
            {
                layerSizes[i] = int.Parse(args[argsCounter++]);
                writer.WriteLine("Size of Layer No. " + (i + 1) + ": " + layerSizes[i]);
            }
            Data     = MNISTReader.ReadData(trainImagesFile, trainLabelsFile, testImagesFile, testLabelsFile);
            Training = Data.Item1;
            Testing  = Data.Item1;
            acc_dW   = new List <Matrix[]>();
            acc_db   = new List <Matrix[]>();
            for (int i = 0; i <= L; i++)
            {
                var W_layer      = new Matrix(layerSizes[i + 1], layerSizes[i]);
                var b_layer      = new Matrix(layerSizes[i + 1], 1);
                var dW_layer     = new Matrix(layerSizes[i + 1], layerSizes[i]);
                var db_layer     = new Matrix(layerSizes[i + 1], 1);
                var deltaW_layer = new Matrix(layerSizes[i + 1], layerSizes[i]);
                var deltab_layer = new Matrix(layerSizes[i + 1], 1);
                var errors_layer = new Matrix(layerSizes[i + 1], 1);
                W_layer.Ramdomize(-0.01, 0.01);
                b_layer.Ramdomize(-0.01, 0.01);
                W[i]          = W_layer;
                b[i]          = b_layer;
                dW[i]         = dW_layer;
                db[i]         = db_layer;
                deltaW[i]     = deltaW_layer;
                deltab[i]     = deltab_layer;
                errors[i + 1] = errors_layer;
                for (int j = 0; j <= batchSize; j++)
                {
                    acc_dW[j][i] = new Matrix(layerSizes[i + 1], layerSizes[i]);
                    acc_db[j][i] = new Matrix(layerSizes[i + 1], 1);
                }
            }
            A     = new Matrix[L + 2];
            Z     = new Matrix[L + 2];
            label = Matrix.CreateColumnMatrix(new double[layerSizes[L + 1]]);
        }