Beispiel #1
0
        public static unsafe Tensor constant(object value)
        {
            var g            = ops.get_default_graph();
            var tensor_value = new attr_value_pb2.AttrValue();
            var tensor_pb    = tensor_util.make_tensor_proto(value);

            tensor_value.Tensor = tensor_pb;
            var dtype_value = new attr_value_pb2.AttrValue
            {
                Type = tensor_value.Tensor.Dtype,
            };

            var attrs = new Dictionary <string, AttrValue>();

            attrs["dtype"] = dtype_value;
            attrs["value"] = tensor_value;
            var const_tensor = g.create_op("Const", null, new TF_DataType[] { (TF_DataType)dtype_value.Type }, attrs: attrs).outputs[0];

            return(const_tensor);
        }
Beispiel #2
0
        private void _init_from_args(object initial_value,
                                     bool trainable            = true,
                                     List <string> collections = null,
                                     bool validate_shape       = true,
                                     string caching_device     = "",
                                     string name       = null,
                                     TF_DataType dtype = TF_DataType.DtInvalid)
        {
            if (initial_value is null)
            {
                throw new ValueError("initial_value must be specified.");
            }

            var init_from_fn = initial_value.GetType().Name == "Func`1";

            if (collections == null)
            {
                collections = new List <string> {
                    tf.GraphKeys.GLOBAL_VARIABLES
                };
            }

            // Store the graph key so optimizers know how to only retrieve variables from
            // this graph.
            _graph_key = ops.get_default_graph().graph_key;

            _trainable = trainable;
            if (trainable && !collections.Contains(tf.GraphKeys.TRAINABLE_VARIABLES))
            {
                collections.Add(tf.GraphKeys.TRAINABLE_VARIABLES);
            }

            tf_with(ops.init_scope2(), delegate
            {
                var values = init_from_fn ? new object[0] : new object[] { initial_value };
                tf_with(ops.name_scope(name, "Variable", values), scope =>
                {
                    name = scope;

                    if (init_from_fn)
                    {
                        // Use attr_scope and device(None) to simulate the behavior of
                        // colocate_with when the variable we want to colocate with doesn't
                        // yet exist.
                        string true_name = ops.name_from_scope_name(name);
                        var attr         = new AttrValue
                        {
                            List = new AttrValue.Types.ListValue()
                        };
                        attr.List.S.Add(ByteString.CopyFromUtf8($"loc:{true_name}"));
                        tf_with(ops.name_scope("Initializer"), scope2 =>
                        {
                            _initial_value = (initial_value as Func <Tensor>)();
                            _initial_value = ops.convert_to_tensor(_initial_value, name: "initial_value", dtype: dtype);
                        });
                        _variable = state_ops.variable_op_v2(_initial_value.shape, _initial_value.dtype.as_base_dtype(), name: name);
                    }
                    // Or get the initial value from a Tensor or Python object.
                    else
                    {
                        _initial_value = ops.convert_to_tensor(initial_value, name: "initial_value", dtype: dtype);

                        var shape = _initial_value.shape;
                        dtype     = _initial_value.dtype;
                        _variable = gen_state_ops.variable_v2(shape, dtype.as_base_dtype(), scope);
                    }

                    // Manually overrides the variable's shape with the initial value's.
                    if (validate_shape)
                    {
                        var initial_value_shape = _initial_value.TensorShape;
                        if (!initial_value_shape.is_fully_defined())
                        {
                            throw new ValueError($"initial_value must have a shape specified: {_initial_value}");
                        }
                    }

                    // If 'initial_value' makes use of other variables, make sure we don't
                    // have an issue if these other variables aren't initialized first by
                    // using their initialized_value() method.
                    var _initial_value2 = _try_guard_against_uninitialized_dependencies(name, _initial_value);

                    _initializer_op = gen_state_ops.assign(_variable, _initial_value2, validate_shape).op;

                    if (!String.IsNullOrEmpty(caching_device))
                    {
                    }
                    else
                    {
                        ops.colocate_with(_initializer_op);

                        _snapshot = gen_array_ops.identity(_variable, name = "read");
                    }

                    ops.add_to_collections(collections, this as IVariableV1);
                });
            });
        }
Beispiel #3
0
        private AttrValue SetAttrValue(OpDef op_def, AttrDef attr_def, object value)
        {
            var attr_value = new AttrValue();

            if (attr_def.Type.StartsWith("list("))
            {
                if (attr_def.HasMinimum)
                {
                    ;
                }
                attr_value.List = new AttrValue.Types.ListValue();
            }

            switch (attr_def.Type)
            {
            case "string":
                attr_value.S = Google.Protobuf.ByteString.CopyFromUtf8((string)value);
                break;

            case "type":
                attr_value.Type = _MakeType((TF_DataType)value, attr_def);
                break;

            case "list(type)":
                attr_value.List.Type.AddRange((value as IList <TF_DataType>).Select(x => _MakeType(x, attr_def)));
                break;

            case "list(int)":
                attr_value.List.I.AddRange((value as int[]).Select(x => Convert.ToInt64(x)));
                break;

            case "bool":
                attr_value.B = (bool)value;
                break;

            case "float":
                attr_value.F = (float)value;
                break;

            case "int":
                attr_value.I = (int)value;
                if (attr_def.HasMinimum && attr_value.I < attr_def.Minimum)
                {
                    throw new ValueError($"Attr '{attr_def.Name}' of '{op_def.Name}' Op passed {attr_value.I} less than minimum {attr_def.Minimum}.");
                }
                break;

            case "shape":
                if (value == null && attr_def.DefaultValue != null)
                {
                    attr_value.Shape = attr_def.DefaultValue.Shape;
                }

                if (value is TensorShape val1)
                {
                    attr_value.Shape = val1.as_proto();
                }
                else if (value is long[] val2)
                {
                    attr_value.Shape = tensor_util.as_shape(val2);
                }
                else if (value is int[] val3)
                {
                    attr_value.Shape = tensor_util.as_shape(val3);
                }

                break;

            default:
                throw new TypeError($"SetAttrValue: can't not convert attr_def.Type '{attr_def.Type}' to protos.");
            }

            return(attr_value);
        }
Beispiel #4
0
        private void _init_from_args(object initial_value      = null,
                                     bool trainable            = true,
                                     List <string> collections = null,
                                     string caching_device     = "",
                                     string name       = null,
                                     TF_DataType dtype = TF_DataType.DtInvalid,
                                     VariableAggregation aggregation = VariableAggregation.None,
                                     TensorShape shape = null)
        {
            var init_from_fn = initial_value.GetType().Name == "Func`1" ||
                               initial_value.GetType().GetInterface("IInitializer") != null;

            if (collections == null)
            {
                collections = new List <string>()
                {
                    tf.GraphKeys.GLOBAL_VARIABLES
                }
            }
            ;
            _trainable = trainable;

            if (trainable && !collections.Contains(tf.GraphKeys.TRAINABLE_VARIABLES))
            {
                collections.Add(tf.GraphKeys.TRAINABLE_VARIABLES);
            }

            _in_graph_mode = !tf.Context.executing_eagerly();
            tf_with(ops.init_scope(), init_scope =>
            {
                var values = init_from_fn ? new object[0] : new object[] { initial_value };
                tf_with(ops.name_scope(name, "Variable", values), scope =>
                {
                    name               = scope;
                    var handle_name    = ops.name_from_scope_name(name);
                    string unique_id   = "";
                    string shared_name = "";

                    if (_in_graph_mode)
                    {
                        shared_name = handle_name;
                        unique_id   = shared_name;
                    }
                    else
                    {
                        unique_id   = $"{handle_name}_{ops.uid()}";
                        shared_name = tf.Context.shared_name();
                    }

                    var attr  = new AttrValue();
                    attr.List = new AttrValue.Types.ListValue();
                    attr.List.S.Add(ByteString.CopyFromUtf8($"loc:@{handle_name}"));
                    tf_with(ops.name_scope("Initializer"), delegate
                    {
                        if (initial_value.GetType().GetInterface("IInitializer") != null)
                        {
                            initial_value = ops.convert_to_tensor((initial_value as IInitializer).Apply(new InitializerArgs(shape, dtype: dtype)));
                        }
                        else
                        {
                            var value     = init_from_fn ? (initial_value as Func <Tensor>)() : initial_value;
                            initial_value = ops.convert_to_tensor(value,
                                                                  name: "initial_value",
                                                                  dtype: dtype);
                        }
                    });
                    _shape         = shape ?? (initial_value as Tensor).TensorShape;
                    _initial_value = initial_value as Tensor;



                    if (_in_graph_mode)
                    {
                        handle         = state_ops.variable_op_v2(_initial_value.shape, _initial_value.dtype.as_base_dtype(), name: name);
                        initializer_op = gen_state_ops.assign(handle, _initial_value, true).op;

                        ops.colocate_with(initializer_op);

                        _graph_element = gen_array_ops.identity(handle, name = "read");
                        ops.add_to_collections <IVariableV1>(collections, this);
                        _dtype = handle.dtype;
                    }
                    else
                    {
                        handle = resource_variable_ops.eager_safe_variable_handle(
                            initial_value: _initial_value,
                            shape: _shape,
                            shared_name: shared_name,
                            name: name,
                            graph_mode: _in_graph_mode);

                        gen_resource_variable_ops.assign_variable_op(handle, _initial_value);
                        is_initialized_op = null;
                        initializer_op    = null;
                        _graph_element    = null;
                        _dtype            = _initial_value.dtype.as_base_dtype();
                        initial_value     = _in_graph_mode ? initial_value : null;
                    }

                    base.__init__(trainable: trainable,
                                  handle: handle,
                                  name: name,
                                  unique_id: unique_id,
                                  handle_name: handle_name);
                });
            });
        }
        /// <param name="verify_shape">Boolean that enables verification of a shape of values.</param>
        public static Tensor _constant_impl(object value,
                                            TF_DataType dtype,
                                            TensorShape shape,
                                            string name,
                                            bool verify_shape,
                                            bool allow_broadcast)
        {
            if (tf.context.executing_eagerly())
            {
                var t = convert_to_eager_tensor(value, tf.context, dtype: dtype);
                if (shape == null)
                {
                    return(t);
                }

                if (t.shape.SequenceEqual(shape.dims))
                {
                    return(t);
                }

                if (verify_shape)
                {
                    throw new TypeError($"Expected Tensor's shape: {shape}, got {t.shape}.");
                }

                var num_t = t.TensorShape.num_elements();
                if (num_t == shape.num_elements())
                {
                    throw new NotImplementedException("");
                }
                if (num_t == 1)
                {
                    if (t.dtype == dtypes.@bool)
                    {
                        throw new NotImplementedException("");
                    }
                    else
                    {
                        return(_eager_fill(shape, t, tf.context));
                    }
                }
            }

            Graph g            = ops.get_default_graph();
            var   tensor_value = new AttrValue();

            tensor_value.Tensor = tensor_util.make_tensor_proto(value,
                                                                dtype: dtype,
                                                                shape: shape,
                                                                verify_shape: verify_shape,
                                                                allow_broadcast: allow_broadcast);

            var dtype_value = new AttrValue
            {
                Type = tensor_value.Tensor.Dtype,
            };

            var attrs = new Dictionary <string, AttrValue>();

            attrs["value"] = tensor_value;
            attrs["dtype"] = dtype_value;

            var op = g.create_op("Const",
                                 new Tensor[0],
                                 new TF_DataType[] { dtype_value.Type.as_tf_dtype() },
                                 attrs: attrs,
                                 name: name);

            return(op.outputs[0]);
        }
        public Operation _apply_op_helper(string op_type_name, string name = "", dynamic args = null)
        {
            var keywords = ConvertToDict(args);
            var g        = ops.get_default_graph();
            var op_def   = g.GetOpDef(op_type_name);

            // Default name if not specified.
            if (String.IsNullOrEmpty(name))
            {
                name = op_type_name;
            }

            // Check for deprecation
            if (op_def.Deprecation != null && op_def.Deprecation.Version > 0)
            {
            }

            var default_type_attr_map = new Dictionary <string, object>();

            foreach (var attr_def in op_def.Attr)
            {
                if (attr_def.Type != "type")
                {
                    continue;
                }
                var key = attr_def.Name;
                if (attr_def.DefaultValue != null)
                {
                    default_type_attr_map[key] = attr_def.DefaultValue.Type;
                }
            }

            var attrs       = new Dictionary <string, object>();
            var inputs      = new List <Tensor>();
            var input_types = new List <TF_DataType>();

            Operation op = null;

            Python.with <ops.name_scope>(new ops.name_scope(name), scope =>
            {
                // Perform input type inference
                foreach (var input_arg in op_def.InputArg)
                {
                    var input_name = input_arg.Name;
                    if (keywords[input_name] is double int_value)
                    {
                        keywords[input_name] = constant_op.constant(int_value, input_name);
                    }

                    if (keywords[input_name] is Tensor value)
                    {
                        if (keywords.ContainsKey(input_name))
                        {
                            inputs.Add(value);
                        }

                        if (!String.IsNullOrEmpty(input_arg.TypeAttr))
                        {
                            attrs[input_arg.TypeAttr] = value.dtype;
                        }

                        if (input_arg.IsRef)
                        {
                        }
                        else
                        {
                            var base_type = value.dtype.as_base_dtype();

                            input_types.Add(base_type);
                        }
                    }
                }

                // Process remaining attrs
                foreach (var attr in op_def.Attr)
                {
                    if (keywords.ContainsKey(attr.Name))
                    {
                        attrs[attr.Name] = keywords[attr.Name];
                    }
                }

                // Convert attr values to AttrValue protos.
                var attr_protos = new Dictionary <string, AttrValue>();
                foreach (var attr_def in op_def.Attr)
                {
                    var key        = attr_def.Name;
                    var value      = attrs[key];
                    var attr_value = new AttrValue();

                    switch (attr_def.Type)
                    {
                    case "string":
                        attr_value.S = Google.Protobuf.ByteString.CopyFromUtf8((string)value);
                        break;

                    case "type":
                        attr_value.Type = _MakeType((TF_DataType)value, attr_def);
                        break;

                    case "bool":
                        attr_value.B = (bool)value;
                        break;

                    case "shape":
                        attr_value.Shape = value == null ?
                                           attr_def.DefaultValue.Shape :
                                           tensor_util.as_shape((long[])value);
                        break;

                    default:
                        throw new InvalidDataException($"attr_def.Type {attr_def.Type}");
                    }

                    attr_protos[key] = attr_value;
                }

                // Determine output types (possibly using attrs)
                var output_types = new List <TF_DataType>();

                foreach (var arg in op_def.OutputArg)
                {
                    if (!String.IsNullOrEmpty(arg.NumberAttr))
                    {
                    }
                    else if (!String.IsNullOrEmpty(arg.TypeAttr))
                    {
                        output_types.Add((TF_DataType)attr_protos[arg.TypeAttr].Type);
                    }
                }

                // Add Op to graph
                op = g.create_op(op_type_name, inputs, output_types.ToArray(),
                                 name: scope,
                                 input_types: input_types.ToArray(),
                                 attrs: attr_protos,
                                 op_def: op_def);
            });

            return(op);
        }
Beispiel #7
0
        private void _init_from_args(object initial_value      = null,
                                     bool trainable            = true,
                                     List <string> collections = null,
                                     string caching_device     = "",
                                     string name       = null,
                                     TF_DataType dtype = TF_DataType.DtInvalid,
                                     TensorShape shape = null)
        {
            var init_from_fn = initial_value.GetType().Name == "Func`1";

            if (collections == null)
            {
                collections = new List <string>()
                {
                    tf.GraphKeys.GLOBAL_VARIABLES
                }
            }
            ;
            _trainable = trainable;

            if (trainable && !collections.Contains(tf.GraphKeys.TRAINABLE_VARIABLES))
            {
                collections.Add(tf.GraphKeys.TRAINABLE_VARIABLES);
            }

            ops.init_scope();
            _in_graph_mode = !tf.context.executing_eagerly();
            tf_with(ops.name_scope(name, "Variable"), scope =>
            {
                name            = scope;
                var handle_name = ops.name_from_scope_name(name);
                var unique_id   = $"{handle_name}_{ops.uid()}";
                var shared_name = tf.context.shared_name();

                if (_in_graph_mode)
                {
                    shared_name = handle_name;
                    unique_id   = shared_name;
                }

                var attr  = new AttrValue();
                attr.List = new AttrValue.Types.ListValue();
                attr.List.S.Add(ByteString.CopyFromUtf8($"loc:@{handle_name}"));
                tf_with(ops.name_scope("Initializer"), delegate
                {
                    initial_value = ops.convert_to_tensor(init_from_fn ? (initial_value as Func <Tensor>)() : initial_value,
                                                          name: "initial_value",
                                                          dtype: dtype);
                });
                _shape         = shape ?? (initial_value as Tensor).TensorShape;
                _initial_value = initial_value as Tensor;
                _handle        = resource_variable_ops.eager_safe_variable_handle(
                    initial_value: _initial_value,
                    shape: _shape,
                    shared_name: shared_name,
                    name: name,
                    graph_mode: _in_graph_mode);
                _unique_id   = unique_id;
                _handle_name = handle_name + ":0";
                _dtype       = _initial_value.dtype.as_base_dtype();
                // _constraint = constraint;

                if (_in_graph_mode)
                {
                    tf_with(ops.name_scope("IsInitialized"), delegate
                    {
                        _is_initialized_op = gen_resource_variable_ops.var_is_initialized_op(_handle);
                    });

                    if (initial_value != null)
                    {
                        tf_with(ops.name_scope("Assign"), scope1 =>
                        {
                            string n        = scope1;
                            _initializer_op = gen_resource_variable_ops.assign_variable_op(_handle,
                                                                                           variables._try_guard_against_uninitialized_dependencies(name, _initial_value),
                                                                                           name: n);
                        });
                    }

                    // Manually assign reads to the handle's device to avoid log
                    // messages.
                    tf_with(ops.name_scope("Read"), delegate
                    {
                        var value      = _read_variable_op();
                        _graph_element = value;
                    });
                }

                ops.add_to_collections(collections, this);
            });
        }