Beispiel #1
0
 private void SetupPopulation(SparseArray<IPerson[]> pop, Dictionary<int, List<IPerson>> tempPop, IZone[] flatZones)
 {
     var flatPop = pop.GetFlatData();
     Parallel.For( 0, flatZones.Length, delegate(int i)
     {
         List<IPerson> temp;
         if ( tempPop.TryGetValue( flatZones[i].ZoneNumber, out temp ) )
         {
             flatPop[i] = temp.ToArray();
         }
         else
         {
             flatPop[i] = new Person[0];
         }
     } );
     this.Population = pop;
 }
Beispiel #2
0
        private void GenerateZone(SparseArray<IPerson[]> population, int zoneIndex, int pop, Random rand)
        {
            Household[] Households = new Household[3];
            for ( int i = 0; i < 3; i++ )
            {
                Households[i] = new Household() { Zone = this.ZoneSystem.ZoneArray[zoneIndex], Cars = i };
            }
            Person[] people = new Person[pop];
            population[zoneIndex] = people;
            for ( int k = 0; k < pop; k++ )
            {
                people[k] = new Person();
            }
            /*
             * To generate the population follow these steps, and at each one clear to integers
             * Step 1) Split into Age Cat's
             * Step 2) Split into ( Unemployed, Full-time, Part-Time )
             * Step 3) Split into ( Non-Student, Student ) , ( Occupation )
             * Step 4) Split into Driver's License ( Not Have / Have )
             */
            SparseArray<int> agePop = SplitAges( zoneIndex, pop, rand );
            int ageOffset = 0;
            foreach ( var validAgeIndex in this.ValidAges )
            {
                var numberOfPeople = agePop[validAgeIndex];
                var employmentPop = SplitEmployment( zoneIndex, validAgeIndex, numberOfPeople, rand );
                int employmentOffset = 0;
                foreach ( var validEmploymentStatusIndex in employmentPop.ValidIndexies() )
                {
                    var numberOfEmploymentClassifiedPeople = employmentPop[validEmploymentStatusIndex];
                    int StudentPop = SplitStudents( zoneIndex, validAgeIndex, validEmploymentStatusIndex, numberOfEmploymentClassifiedPeople, rand );
                    int numberOfDriversLicenses = this.SplitDrivers( zoneIndex, validAgeIndex, validEmploymentStatusIndex, numberOfEmploymentClassifiedPeople, rand );
                    var OccupationSplit = this.SplitOccupations( zoneIndex, validAgeIndex, validEmploymentStatusIndex,
                        numberOfEmploymentClassifiedPeople, rand );

                    AssignEmploymentStatus( people, ageOffset, employmentOffset, validEmploymentStatusIndex, numberOfEmploymentClassifiedPeople );
                    AssignSchools( people, ageOffset, employmentOffset, StudentPop );
                    AssignOccupationAndLicenese( people, ageOffset, employmentOffset, OccupationSplit, numberOfEmploymentClassifiedPeople,
                        numberOfDriversLicenses, rand );
                    employmentOffset += numberOfEmploymentClassifiedPeople;
                }

                AssignAge( rand, people, ageOffset, validAgeIndex, numberOfPeople );

                // Assign people to households depending on the number of cars they will have
                foreach ( var validOccupationIndex in this.Demographics.OccupationCategories.ValidIndexies() )
                {
                    int[] haveLicenseIndexes, doNotHaveLicenseIndexes;
                    var haveLicense = this.SplitCars( people, zoneIndex, validAgeIndex, validOccupationIndex,
                        true, ageOffset, numberOfPeople, rand, out haveLicenseIndexes );
                    var doNotHaveLicense = this.SplitCars( people, zoneIndex, validAgeIndex, validOccupationIndex,
                        false, ageOffset, numberOfPeople, rand, out doNotHaveLicenseIndexes );
                    AssignCars( people, haveLicenseIndexes, haveLicense, Households, ageOffset, rand );
                    AssignCars( people, doNotHaveLicenseIndexes, doNotHaveLicense, Households, ageOffset, rand );
                }
                ageOffset += numberOfPeople;
            }
        }
Beispiel #3
0
        private SparseArray<int> SplitCars(Person[] people, int zoneIndex, int validAgeIndex, int validOccupationIndex, bool license, int ageOffset, int agePop, Random rand, out int[] indexes)
        {
            SparseArray<float> ret = new SparseArray<float>( new SparseIndexing() { Indexes = new SparseSet[] { new SparseSet() { Start = 0, Stop = 2 } } } );
            // Because everything is random at this point we actually need to scan to see how many people we have
            List<int> indexesList = new List<int>( agePop );
            if ( validOccupationIndex == this.UnemployedOccupation )
            {
                for ( int i = 0; i < agePop; i++ )
                {
                    var person = people[i + ageOffset];
                    if ( person.DriversLicense == license )
                    {
                        var range = this.Demographics.AgeCategories[validAgeIndex];
                        var age = person.Age;
                        if ( age >= range.Start && age <= range.Stop )
                        {
                            indexesList.Add( i );
                        }
                    }
                }
                var data = this.Demographics.NonWorkerVehicleRates[zoneIndex];
                foreach ( var validCarsIndex in ret.ValidIndexies() )
                {
                    ret[validCarsIndex] = data[license ? 1 : 0, validAgeIndex, validCarsIndex];
                }
            }
            else
            {
                for ( int i = 0; i < agePop; i++ )
                {
                    var person = people[i + ageOffset];
                    if ( person.DriversLicense == license
                        && person.Occupation == validOccupationIndex )
                    {
                        indexesList.Add( i );
                    }
                }
                var data = this.Demographics.WorkerVehicleRates[zoneIndex];
                foreach ( var validCarsIndex in ret.ValidIndexies() )
                {
                    ret[validCarsIndex] = data[license ? 1 : 0, validOccupationIndex, validCarsIndex];
                }
            }
            indexes = indexesList.ToArray();

            return this.SplitAndClear( indexes.Length, ret, rand );
        }
Beispiel #4
0
 private void AssignOccupationAndLicenese(Person[] people, int ageOffset, int employmentOffset, SparseArray<int> OccupationSplit, int numberOfEmploymentClassifiedPeople,
     int numberOfLicenses, Random r)
 {
     int[] personIndex = new int[numberOfEmploymentClassifiedPeople];
     for ( int i = 0; i < numberOfEmploymentClassifiedPeople; i++ )
     {
         personIndex[i] = i;
     }
     // Randomize the population for assignment (Card shuffle algorithm)
     for ( int i = 0; i < numberOfEmploymentClassifiedPeople; i++ )
     {
         var selectedIndex = r.Next( i, numberOfEmploymentClassifiedPeople );
         var temp = personIndex[selectedIndex];
         personIndex[selectedIndex] = personIndex[i];
         personIndex[i] = temp;
     }
     // assign the occupations
     int occOffset = 0;
     foreach ( var occIndex in OccupationSplit.ValidIndexies() )
     {
         var occPop = OccupationSplit[occIndex];
         for ( int i = 0; i < occPop; i++ )
         {
             people[personIndex[occOffset + i] + ageOffset + employmentOffset].Occupation = occIndex;
         }
         occOffset += occPop;
     }
     // Randomize the population for assignment (Card shuffle algorithm)
     for ( int i = 0; i < numberOfEmploymentClassifiedPeople; i++ )
     {
         var selectedIndex = r.Next( i, numberOfEmploymentClassifiedPeople );
         var temp = personIndex[selectedIndex];
         personIndex[selectedIndex] = personIndex[i];
         personIndex[i] = temp;
     }
     // assign the occupations
     for ( int i = 0; i < numberOfLicenses; i++ )
     {
         people[personIndex[i] + ageOffset + employmentOffset].DriversLicense = true;
     }
 }
Beispiel #5
0
        private void AssignCars(Person[] people, int[] indexes, SparseArray<int> split, Household[] households, int ageOffset, Random rand)
        {
            var numberOfPeople = indexes.Length;
            // randomly shuffle the indexes before we actually assign the households
            for ( int i = 0; i < numberOfPeople; i++ )
            {
                var selectedIndex = rand.Next( i, numberOfPeople );
                var temp = indexes[selectedIndex];
                indexes[selectedIndex] = indexes[i];
                indexes[i] = temp;
            }

            int typeOffset = 0;
            foreach ( var carType in split.ValidIndexies() )
            {
                var numberInType = split[carType];
                for ( int i = 0; i < numberInType; i++ )
                {
                    people[indexes[i + typeOffset] + ageOffset].Household = households[carType];
                }
                typeOffset += numberInType;
            }
        }
Beispiel #6
0
 private void AssignAge(Random rand, Person[] people, int ageOffset, int validAgeIndex, int numberOfPeople)
 {
     Range ageRange = this.Demographics.AgeCategories[validAgeIndex];
     for ( int p = 0; p < numberOfPeople; p++ )
     {
         people[p + ageOffset].Age = rand.Next( ageRange.Start, int.MaxValue == ageRange.Stop ? int.MaxValue : ageRange.Stop + 1 );
         people[p + ageOffset].ExpansionFactor = 1;
     }
 }
Beispiel #7
0
 private static void AssignSchools(Person[] people, int ageOffset, int employmentOffset, int StudentPop)
 {
     for ( int p = 0; p < StudentPop; p++ )
     {
         people[p + ageOffset + employmentOffset].StudentStatus = 1;
     }
 }
Beispiel #8
0
 private static void AssignEmploymentStatus(Person[] people, int ageOffset, int employmentOffset, int validEmploymentStatusIndex, int numberOfEmploymentClassifiedPeople)
 {
     for ( int p = 0; p < numberOfEmploymentClassifiedPeople; p++ )
     {
         people[p + ageOffset + employmentOffset].EmploymentStatus = validEmploymentStatusIndex;
     }
 }