Beispiel #1
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     // intersect in local space
     float rd2x = r.dx * r.dx;
     float rd2y = r.dy * r.dy;
     float rd2z = r.dz * r.dz;
     float ro2x = r.ox * r.ox;
     float ro2y = r.oy * r.oy;
     float ro2z = r.oz * r.oz;
     // setup the quartic coefficients
     // some common terms could probably be shared across these
     double A = (rd2y * rd2y + rd2z * rd2z + rd2x * rd2x);
     double B = 4 * (r.oy * rd2y * r.dy + r.oz * r.dz * rd2z + r.ox * r.dx * rd2x);
     double C = (-rd2x - rd2y - rd2z + 6 * (ro2y * rd2y + ro2z * rd2z + ro2x * rd2x));
     double D = 2 * (2 * ro2z * r.oz * r.dz - r.oz * r.dz + 2 * ro2x * r.ox * r.dx + 2 * ro2y * r.oy * r.dy - r.ox * r.dx - r.oy * r.dy);
     double E = 3.0f / 8.0f + (-ro2z + ro2z * ro2z - ro2y + ro2y * ro2y - ro2x + ro2x * ro2x);
     // solve equation
     double[] t = Solvers.solveQuartic(A, B, C, D, E);
     if (t != null)
     {
         // early rejection
         if (t[0] >= r.getMax() || t[t.Length - 1] <= r.getMin())
             return;
         // find first intersection in front of the ray
         for (int i = 0; i < t.Length; i++)
         {
             if (t[i] > r.getMin())
             {
                 r.setMax((float)t[i]);
                 state.setIntersection(0, 0, 0);
                 return;
             }
         }
     }
 }
Beispiel #2
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     // intersect in local space
     float qa = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
     float qb = 2 * ((r.dx * r.ox) + (r.dy * r.oy) + (r.dz * r.oz));
     float qc = ((r.ox * r.ox) + (r.oy * r.oy) + (r.oz * r.oz)) - 1;
     double[] t = Solvers.solveQuadric(qa, qb, qc);
     if (t != null)
     {
         // early rejection
         if (t[0] >= r.getMax() || t[1] <= r.getMin())
             return;
         if (t[0] > r.getMin())
             r.setMax((float)t[0]);
         else
             r.setMax((float)t[1]);
         state.setIntersection(0, 0, 0);
     }
 }
Beispiel #3
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     int i3 = primID * 3;
     float ocx = r.ox - particles[i3 + 0];
     float ocy = r.oy - particles[i3 + 1];
     float ocz = r.oz - particles[i3 + 2];
     float qa = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
     float qb = 2 * ((r.dx * ocx) + (r.dy * ocy) + (r.dz * ocz));
     float qc = ((ocx * ocx) + (ocy * ocy) + (ocz * ocz)) - r2;
     double[] t = Solvers.solveQuadric(qa, qb, qc);
     if (t != null)
     {
         // early rejection
         if (t[0] >= r.getMax() || t[1] <= r.getMin())
             return;
         if (t[0] > r.getMin())
             r.setMax((float)t[0]);
         else
             r.setMax((float)t[1]);
         state.setIntersection(primID);
     }
 }
Beispiel #4
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     if (r.getMax() == float.PositiveInfinity)
         state.setIntersection(0, 0, 0);
 }
Beispiel #5
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     float intervalMin = float.NegativeInfinity;
     float intervalMax = float.PositiveInfinity;
     float orgX = r.ox;
     float invDirX = 1 / r.dx;
     float t1, t2;
     t1 = (minX - orgX) * invDirX;
     t2 = (maxX - orgX) * invDirX;
     int sideIn = -1, sideOut = -1;
     if (invDirX > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             sideIn = 0;
         }
         if (t2 < intervalMax)
         {
             intervalMax = t2;
             sideOut = 1;
         }
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             sideIn = 1;
         }
         if (t1 < intervalMax)
         {
             intervalMax = t1;
             sideOut = 0;
         }
     }
     if (intervalMin > intervalMax)
         return;
     float orgY = r.oy;
     float invDirY = 1 / r.dy;
     t1 = (minY - orgY) * invDirY;
     t2 = (maxY - orgY) * invDirY;
     if (invDirY > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             sideIn = 2;
         }
         if (t2 < intervalMax)
         {
             intervalMax = t2;
             sideOut = 3;
         }
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             sideIn = 3;
         }
         if (t1 < intervalMax)
         {
             intervalMax = t1;
             sideOut = 2;
         }
     }
     if (intervalMin > intervalMax)
         return;
     float orgZ = r.oz;
     float invDirZ = 1 / r.dz;
     t1 = (minZ - orgZ) * invDirZ; // no front wall
     t2 = (maxZ - orgZ) * invDirZ;
     if (invDirZ > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             sideIn = 4;
         }
         if (t2 < intervalMax)
         {
             intervalMax = t2;
             sideOut = 5;
         }
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             sideIn = 5;
         }
         if (t1 < intervalMax)
         {
             intervalMax = t1;
             sideOut = 4;
         }
     }
     if (intervalMin > intervalMax)
         return;
     if (r.isInside(intervalMin))
     {
         r.setMax(intervalMin);
         state.setIntersection(sideIn, 0, 0);
     }
     else if (r.isInside(intervalMax))
     {
         r.setMax(intervalMax);
         state.setIntersection(sideOut, 0, 0);
     }
 }
Beispiel #6
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     float intervalMin = r.getMin();
     float intervalMax = r.getMax();
     float orgX = r.ox;
     float orgY = r.oy;
     float orgZ = r.oz;
     float dirX = r.dx, invDirX = 1 / dirX;
     float dirY = r.dy, invDirY = 1 / dirY;
     float dirZ = r.dz, invDirZ = 1 / dirZ;
     float t1, t2;
     t1 = (-1 - orgX) * invDirX;
     t2 = (+1 - orgX) * invDirX;
     int curr = -1;
     if (invDirX > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             curr = 0;
         }
         if (t2 < intervalMax)
             intervalMax = t2;
         if (intervalMin > intervalMax)
             return;
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             curr = 1;
         }
         if (t1 < intervalMax)
             intervalMax = t1;
         if (intervalMin > intervalMax)
             return;
     }
     t1 = (-1 - orgY) * invDirY;
     t2 = (+1 - orgY) * invDirY;
     if (invDirY > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             curr = 2;
         }
         if (t2 < intervalMax)
             intervalMax = t2;
         if (intervalMin > intervalMax)
             return;
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             curr = 3;
         }
         if (t1 < intervalMax)
             intervalMax = t1;
         if (intervalMin > intervalMax)
             return;
     }
     t1 = (-1 - orgZ) * invDirZ;
     t2 = (+1 - orgZ) * invDirZ;
     if (invDirZ > 0)
     {
         if (t1 > intervalMin)
         {
             intervalMin = t1;
             curr = 4;
         }
         if (t2 < intervalMax)
             intervalMax = t2;
         if (intervalMin > intervalMax)
             return;
     }
     else
     {
         if (t2 > intervalMin)
         {
             intervalMin = t2;
             curr = 5;
         }
         if (t1 < intervalMax)
             intervalMax = t1;
         if (intervalMin > intervalMax)
             return;
     }
     // box is hit at [intervalMin, intervalMax]
     orgX += intervalMin * dirX;
     orgY += intervalMin * dirY;
     orgZ += intervalMin * dirZ;
     // locate starting point inside the grid
     // and set up 3D-DDA vars
     int indxX, indxY, indxZ;
     int stepX, stepY, stepZ;
     int stopX, stopY, stopZ;
     float deltaX, deltaY, deltaZ;
     float tnextX, tnextY, tnextZ;
     // stepping factors along X
     indxX = (int)((orgX + 1) * invVoxelwx);
     if (indxX < 0)
         indxX = 0;
     else if (indxX >= nx)
         indxX = nx - 1;
     if (Math.Abs(dirX) < 1e-6f)
     {
         stepX = 0;
         stopX = indxX;
         deltaX = 0;
         tnextX = float.PositiveInfinity;
     }
     else if (dirX > 0)
     {
         stepX = 1;
         stopX = nx;
         deltaX = voxelwx * invDirX;
         tnextX = intervalMin + ((indxX + 1) * voxelwx - 1 - orgX) * invDirX;
     }
     else
     {
         stepX = -1;
         stopX = -1;
         deltaX = -voxelwx * invDirX;
         tnextX = intervalMin + (indxX * voxelwx - 1 - orgX) * invDirX;
     }
     // stepping factors along Y
     indxY = (int)((orgY + 1) * invVoxelwy);
     if (indxY < 0)
         indxY = 0;
     else if (indxY >= ny)
         indxY = ny - 1;
     if (Math.Abs(dirY) < 1e-6f)
     {
         stepY = 0;
         stopY = indxY;
         deltaY = 0;
         tnextY = float.PositiveInfinity;
     }
     else if (dirY > 0)
     {
         stepY = 1;
         stopY = ny;
         deltaY = voxelwy * invDirY;
         tnextY = intervalMin + ((indxY + 1) * voxelwy - 1 - orgY) * invDirY;
     }
     else
     {
         stepY = -1;
         stopY = -1;
         deltaY = -voxelwy * invDirY;
         tnextY = intervalMin + (indxY * voxelwy - 1 - orgY) * invDirY;
     }
     // stepping factors along Z
     indxZ = (int)((orgZ + 1) * invVoxelwz);
     if (indxZ < 0)
         indxZ = 0;
     else if (indxZ >= nz)
         indxZ = nz - 1;
     if (Math.Abs(dirZ) < 1e-6f)
     {
         stepZ = 0;
         stopZ = indxZ;
         deltaZ = 0;
         tnextZ = float.PositiveInfinity;
     }
     else if (dirZ > 0)
     {
         stepZ = 1;
         stopZ = nz;
         deltaZ = voxelwz * invDirZ;
         tnextZ = intervalMin + ((indxZ + 1) * voxelwz - 1 - orgZ) * invDirZ;
     }
     else
     {
         stepZ = -1;
         stopZ = -1;
         deltaZ = -voxelwz * invDirZ;
         tnextZ = intervalMin + (indxZ * voxelwz - 1 - orgZ) * invDirZ;
     }
     // are we starting inside the cube
     bool isInside = inside(indxX, indxY, indxZ) && bounds.contains(r.ox, r.oy, r.oz);
     // trace through the grid
     for (; ; )
     {
         if (inside(indxX, indxY, indxZ) != isInside)
         {
             // we hit a boundary
             r.setMax(intervalMin);
             // if we are inside, the last bit needs to be flipped
             if (isInside)
                 curr ^= 1;
             state.setIntersection(curr);
             return;
         }
         if (tnextX < tnextY && tnextX < tnextZ)
         {
             curr = dirX > 0 ? 0 : 1;
             intervalMin = tnextX;
             if (intervalMin > intervalMax)
                 return;
             indxX += stepX;
             if (indxX == stopX)
                 return;
             tnextX += deltaX;
         }
         else if (tnextY < tnextZ)
         {
             curr = dirY > 0 ? 2 : 3;
             intervalMin = tnextY;
             if (intervalMin > intervalMax)
                 return;
             indxY += stepY;
             if (indxY == stopY)
                 return;
             tnextY += deltaY;
         }
         else
         {
             curr = dirZ > 0 ? 4 : 5;
             intervalMin = tnextZ;
             if (intervalMin > intervalMax)
                 return;
             indxZ += stepZ;
             if (indxZ == stopZ)
                 return;
             tnextZ += deltaZ;
         }
     }
 }
Beispiel #7
0
            public void intersectPrimitive(Ray r, int primID, IntersectionState state)
            {
                float uv00 = 0, uv01 = 0, uv10 = 0, uv11 = 0, uv20 = 0, uv21 = 0;
                switch (triangleMesh.uvs.interp)
                {
                    case ParameterList.InterpolationType.NONE:
                    case ParameterList.InterpolationType.FACE:
                    default:
                        return;
                    case ParameterList.InterpolationType.VERTEX:
                        {
                            int tri = 3 * primID;
                            int index0 = triangleMesh.triangles[tri + 0];
                            int index1 = triangleMesh.triangles[tri + 1];
                            int index2 = triangleMesh.triangles[tri + 2];
                            int i20 = 2 * index0;
                            int i21 = 2 * index1;
                            int i22 = 2 * index2;
                            float[] uvs = triangleMesh.uvs.data;
                            uv00 = uvs[i20 + 0];
                            uv01 = uvs[i20 + 1];
                            uv10 = uvs[i21 + 0];
                            uv11 = uvs[i21 + 1];
                            uv20 = uvs[i22 + 0];
                            uv21 = uvs[i22 + 1];
                            break;

                        }
                    case ParameterList.InterpolationType.FACEVARYING:
                        {
                            int idx = (3 * primID) << 1;
                            float[] uvs = triangleMesh.uvs.data;
                            uv00 = uvs[idx + 0];
                            uv01 = uvs[idx + 1];
                            uv10 = uvs[idx + 2];
                            uv11 = uvs[idx + 3];
                            uv20 = uvs[idx + 4];
                            uv21 = uvs[idx + 5];
                            break;
                        }
                }

                double edge1x = uv10 - uv00;
                double edge1y = uv11 - uv01;
                double edge2x = uv20 - uv00;
                double edge2y = uv21 - uv01;
                double pvecx = r.dy * 0 - r.dz * edge2y;
                double pvecy = r.dz * edge2x - r.dx * 0;
                double pvecz = r.dx * edge2y - r.dy * edge2x;
                double qvecx, qvecy, qvecz;
                double u, v;
                double det = edge1x * pvecx + edge1y * pvecy + 0 * pvecz;
                if (det > 0)
                {
                    double tvecx = r.ox - uv00;
                    double tvecy = r.oy - uv01;
                    double tvecz = r.oz;
                    u = (tvecx * pvecx + tvecy * pvecy + tvecz * pvecz);
                    if (u < 0.0 || u > det)
                        return;
                    qvecx = tvecy * 0 - tvecz * edge1y;
                    qvecy = tvecz * edge1x - tvecx * 0;
                    qvecz = tvecx * edge1y - tvecy * edge1x;
                    v = (r.dx * qvecx + r.dy * qvecy + r.dz * qvecz);
                    if (v < 0.0 || u + v > det)
                        return;
                }
                else if (det < 0)
                {
                    double tvecx = r.ox - uv00;
                    double tvecy = r.oy - uv01;
                    double tvecz = r.oz;
                    u = (tvecx * pvecx + tvecy * pvecy + tvecz * pvecz);
                    if (u > 0.0 || u < det)
                        return;
                    qvecx = tvecy * 0 - tvecz * edge1y;
                    qvecy = tvecz * edge1x - tvecx * 0;
                    qvecz = tvecx * edge1y - tvecy * edge1x;
                    v = (r.dx * qvecx + r.dy * qvecy + r.dz * qvecz);
                    if (v > 0.0 || u + v < det)
                        return;
                }
                else
                    return;
                double inv_det = 1.0 / det;
                float t = (float)((edge2x * qvecx + edge2y * qvecy + 0 * qvecz) * inv_det);
                if (r.isInside(t))
                {
                    r.setMax(t);
                    state.setIntersection(primID, (float)(u * inv_det), (float)(v * inv_det));
                }
            }
Beispiel #8
0
 private void intersectTriangleKensler(Ray r, int primID, IntersectionState state)
 {
     int tri = 3 * primID;
     int a = 3 * triangles[tri + 0];
     int b = 3 * triangles[tri + 1];
     int c = 3 * triangles[tri + 2];
     float edge0x = points[b + 0] - points[a + 0];
     float edge0y = points[b + 1] - points[a + 1];
     float edge0z = points[b + 2] - points[a + 2];
     float edge1x = points[a + 0] - points[c + 0];
     float edge1y = points[a + 1] - points[c + 1];
     float edge1z = points[a + 2] - points[c + 2];
     float nx = edge0y * edge1z - edge0z * edge1y;
     float ny = edge0z * edge1x - edge0x * edge1z;
     float nz = edge0x * edge1y - edge0y * edge1x;
     float v = r.dot(nx, ny, nz);
     float iv = 1 / v;
     float edge2x = points[a + 0] - r.ox;
     float edge2y = points[a + 1] - r.oy;
     float edge2z = points[a + 2] - r.oz;
     float va = nx * edge2x + ny * edge2y + nz * edge2z;
     float t = iv * va;
     if (!r.isInside(t))
         return;
     float ix = edge2y * r.dz - edge2z * r.dy;
     float iy = edge2z * r.dx - edge2x * r.dz;
     float iz = edge2x * r.dy - edge2y * r.dx;
     float v1 = ix * edge1x + iy * edge1y + iz * edge1z;
     float beta = iv * v1;
     if (beta < 0)
         return;
     float v2 = ix * edge0x + iy * edge0y + iz * edge0z;
     if ((v1 + v2) * v > v * v)
         return;
     float gamma = iv * v2;
     if (gamma < 0)
         return;
     r.setMax(t);
     state.setIntersection(primID, beta, gamma);
 }
Beispiel #9
0
 public void intersectBox(Ray r, float hx, float hy, float hz, int primID, IntersectionState state)
 {
     switch (k)
     {
         case 0:
             {
                 float hu = hy;
                 float hv = hz;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     u = 0;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     v = 0;
                 state.setIntersection(primID, u, v);
                 return;
             }
         case 1:
             {
                 float hu = hz;
                 float hv = hx;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     u = 0;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     v = 0;
                 state.setIntersection(primID, u, v);
                 return;
             }
         case 2:
             {
                 float hu = hx;
                 float hv = hy;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     u = 0;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     v = 0;
                 state.setIntersection(primID, u, v);
                 return;
             }
     }
 }
Beispiel #10
0
 public void intersect(Ray r, int primID, IntersectionState state)
 {
     switch (k)
     {
         case 0:
             {
                 float det = 1.0f / (r.dx + nu * r.dy + nv * r.dz);
                 float t = (nd - r.ox - nu * r.oy - nv * r.oz) * det;
                 if (!r.isInside(t))
                     return;
                 float hu = r.oy + t * r.dy;
                 float hv = r.oz + t * r.dz;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     return;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     return;
                 if (u + v > 1.0f)
                     return;
                 r.setMax(t);
                 state.setIntersection(primID, u, v);
                 return;
             }
         case 1:
             {
                 float det = 1.0f / (r.dy + nu * r.dz + nv * r.dx);
                 float t = (nd - r.oy - nu * r.oz - nv * r.ox) * det;
                 if (!r.isInside(t))
                     return;
                 float hu = r.oz + t * r.dz;
                 float hv = r.ox + t * r.dx;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     return;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     return;
                 if (u + v > 1.0f)
                     return;
                 r.setMax(t);
                 state.setIntersection(primID, u, v);
                 return;
             }
         case 2:
             {
                 float det = 1.0f / (r.dz + nu * r.dx + nv * r.dy);
                 float t = (nd - r.oz - nu * r.ox - nv * r.oy) * det;
                 if (!r.isInside(t))
                     return;
                 float hu = r.ox + t * r.dx;
                 float hv = r.oy + t * r.dy;
                 float u = hu * bnu + hv * bnv + bnd;
                 if (u < 0.0f)
                     return;
                 float v = hu * cnu + hv * cnv + cnd;
                 if (v < 0.0f)
                     return;
                 if (u + v > 1.0f)
                     return;
                 r.setMax(t);
                 state.setIntersection(primID, u, v);
                 return;
             }
     }
 }
Beispiel #11
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            // intersect with bounding sphere
            float qc = ((r.ox * r.ox) + (r.oy * r.oy) + (r.oz * r.oz)) - BOUNDING_RADIUS2;
            float qt = r.getMin();
            if (qc > 0)
            {
                // we are starting outside the sphere, find intersection on the
                // sphere
                float qa = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
                float qb = 2 * ((r.dx * r.ox) + (r.dy * r.oy) + (r.dz * r.oz));
                double[] t = Solvers.solveQuadric(qa, qb, qc);
                // early rejection
                if (t == null || t[0] >= r.getMax() || t[1] <= r.getMin())
                    return;
                qt = (float)t[0];
            }
            float dist = float.PositiveInfinity;
            float rox = r.ox + qt * r.dx;
            float roy = r.oy + qt * r.dy;
            float roz = r.oz + qt * r.dz;
            float invRayLength = (float)(1 / Math.Sqrt(r.dx * r.dx + r.dy * r.dy + r.dz * r.dz));
            // now we can start intersection
            while (true)
            {
                float zw = rox;
                float zx = roy;
                float zy = roz;
                float zz = 0;

                float zpw = 1;
                float zpx = 0;
                float zpy = 0;
                float zpz = 0;

                // run several iterations
                float dotz = 0;
                for (int i = 0; i < maxIterations; i++)
                {
                    {
                        // zp = 2 * (z * zp)
                        float nw = zw * zpw - zx * zpx - zy * zpy - zz * zpz;
                        float nx = zw * zpx + zx * zpw + zy * zpz - zz * zpy;
                        float ny = zw * zpy + zy * zpw + zz * zpx - zx * zpz;
                        zpz = 2 * (zw * zpz + zz * zpw + zx * zpy - zy * zpx);
                        zpw = 2 * nw;
                        zpx = 2 * nx;
                        zpy = 2 * ny;
                    }
                    {
                        // z = z*z + c
                        float nw = zw * zw - zx * zx - zy * zy - zz * zz + cw;
                        zx = 2 * zw * zx + cx;
                        zy = 2 * zw * zy + cy;
                        zz = 2 * zw * zz + cz;
                        zw = nw;
                    }
                    dotz = zw * zw + zx * zx + zy * zy + zz * zz;
                    if (dotz > ESCAPE_THRESHOLD)
                        break;

                }
                float normZ = (float)Math.Sqrt(dotz);
                dist = 0.5f * normZ * (float)Math.Log(normZ) / Length(zpw, zpx, zpy, zpz);
                rox += dist * r.dx;
                roy += dist * r.dy;
                roz += dist * r.dz;
                qt += dist;
                if (dist * invRayLength < epsilon)
                    break;
                if (rox * rox + roy * roy + roz * roz > BOUNDING_RADIUS2)
                    return;
            }
            // now test t value again
            if (!r.isInside(qt))
                return;
            if (dist * invRayLength < epsilon)
            {
                // valid hit
                r.setMax(qt);
                state.setIntersection(0, 0, 0);
            }
        }
Beispiel #12
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     int hair = primID / numSegments;
     int line = primID % numSegments;
     int vRoot = hair * 3 * (numSegments + 1);
     int v0 = vRoot + line * 3;
     int v1 = v0 + 3;
     float vx = points[v1 + 0] - points[v0 + 0];
     float vy = points[v1 + 1] - points[v0 + 1];
     float vz = points[v1 + 2] - points[v0 + 2];
     float ux = r.dy * vz - r.dz * vy;
     float uy = r.dz * vx - r.dx * vz;
     float uz = r.dx * vy - r.dy * vx;
     float nx = uy * vz - uz * vy;
     float ny = uz * vx - ux * vz;
     float nz = ux * vy - uy * vx;
     float tden = 1 / (nx * r.dx + ny * r.dy + nz * r.dz);
     float tnum = nx * (points[v0 + 0] - r.ox) + ny * (points[v0 + 1] - r.oy) + nz * (points[v0 + 2] - r.oz);
     float t = tnum * tden;
     if (r.isInside(t))
     {
         int vn = hair * (numSegments + 1) + line;
         float px = r.ox + t * r.dx;
         float py = r.oy + t * r.dy;
         float pz = r.oz + t * r.dz;
         float qx = px - points[v0 + 0];
         float qy = py - points[v0 + 1];
         float qz = pz - points[v0 + 2];
         float q = (vx * qx + vy * qy + vz * qz) / (vx * vx + vy * vy + vz * vz);
         if (q <= 0)
         {
             // don't included rounded tip at root
             if (line == 0)
                 return;
             float dx = points[v0 + 0] - px;
             float dy = points[v0 + 1] - py;
             float dz = points[v0 + 2] - pz;
             float d2 = dx * dx + dy * dy + dz * dz;
             float width = getWidth(vn);
             if (d2 < (width * width * 0.25f))
             {
                 r.setMax(t);
                 state.setIntersection(primID, 0, 0);
             }
         }
         else if (q >= 1)
         {
             float dx = points[v1 + 0] - px;
             float dy = points[v1 + 1] - py;
             float dz = points[v1 + 2] - pz;
             float d2 = dx * dx + dy * dy + dz * dz;
             float width = getWidth(vn + 1);
             if (d2 < (width * width * 0.25f))
             {
                 r.setMax(t);
                 state.setIntersection(primID, 0, 1);
             }
         }
         else
         {
             float dx = points[v0 + 0] + q * vx - px;
             float dy = points[v0 + 1] + q * vy - py;
             float dz = points[v0 + 2] + q * vz - pz;
             float d2 = dx * dx + dy * dy + dz * dz;
             float width = (1 - q) * getWidth(vn) + q * getWidth(vn + 1);
             if (d2 < (width * width * 0.25f))
             {
                 r.setMax(t);
                 state.setIntersection(primID, 0, q);
             }
         }
     }
 }
Beispiel #13
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            // ray/bilinear patch intersection adapted from "Production Rendering:
            // Design and Implementation" by Ian Stephenson (Ed.)
            int quad = 4 * primID;
            int p0 = 3 * quads[quad + 0];
            int p1 = 3 * quads[quad + 1];
            int p2 = 3 * quads[quad + 2];
            int p3 = 3 * quads[quad + 3];
            // transform patch into Hilbert space
            float[] A = {
                points[p2 + 0] - points[p3 + 0] - points[p1 + 0] + points[p0 + 0],
                points[p2 + 1] - points[p3 + 1] - points[p1 + 1] + points[p0 + 1],
                points[p2 + 2] - points[p3 + 2] - points[p1 + 2] + points[p0 + 2] };
            float[] B = { points[p1 + 0] - points[p0 + 0],
                points[p1 + 1] - points[p0 + 1],
                points[p1 + 2] - points[p0 + 2] };
            float[] C = { points[p3 + 0] - points[p0 + 0],
                points[p3 + 1] - points[p0 + 1],
                points[p3 + 2] - points[p0 + 2] };
            float[] R = { r.ox - points[p0 + 0], r.oy - points[p0 + 1],
                r.oz - points[p0 + 2] };
            float[] Q = { r.dx, r.dy, r.dz };

            // pick major direction
            float absqx = Math.Abs(r.dx);
            float absqy = Math.Abs(r.dy);
            float absqz = Math.Abs(r.dz);

            int X = 0, Y = 1, Z = 2;
            if (absqx > absqy && absqx > absqz)
            {
                // X = 0, Y = 1, Z = 2
            }
            else if (absqy > absqz)
            {
                // X = 1, Y = 0, Z = 2
                X = 1;
                Y = 0;
            }
            else
            {
                // X = 2, Y = 1, Z = 0
                X = 2;
                Z = 0;
            }

            float Cxz = C[X] * Q[Z] - C[Z] * Q[X];
            float Cyx = C[Y] * Q[X] - C[X] * Q[Y];
            float Czy = C[Z] * Q[Y] - C[Y] * Q[Z];
            float Rxz = R[X] * Q[Z] - R[Z] * Q[X];
            float Ryx = R[Y] * Q[X] - R[X] * Q[Y];
            float Rzy = R[Z] * Q[Y] - R[Y] * Q[Z];
            float Bxy = B[X] * Q[Y] - B[Y] * Q[X];
            float Byz = B[Y] * Q[Z] - B[Z] * Q[Y];
            float Bzx = B[Z] * Q[X] - B[X] * Q[Z];
            float a = A[X] * Byz + A[Y] * Bzx + A[Z] * Bxy;
            if (a == 0)
            {
                // setup for linear equation
                float b = B[X] * Czy + B[Y] * Cxz + B[Z] * Cyx;
                float c = C[X] * Rzy + C[Y] * Rxz + C[Z] * Ryx;
                float u = -c / b;
                if (u >= 0 && u <= 1)
                {
                    float v = (u * Bxy + Ryx) / Cyx;
                    if (v >= 0 && v <= 1)
                    {
                        float t = (B[X] * u + C[X] * v - R[X]) / Q[X];
                        if (r.isInside(t))
                        {
                            r.setMax(t);
                            state.setIntersection(primID, u, v);
                        }
                    }
                }
            }
            else
            {
                // setup for quadratic equation
                float b = A[X] * Rzy + A[Y] * Rxz + A[Z] * Ryx + B[X] * Czy + B[Y] * Cxz + B[Z] * Cyx;
                float c = C[X] * Rzy + C[Y] * Rxz + C[Z] * Ryx;
                float discrim = b * b - 4 * a * c;
                // reject trivial cases
                if (c * (a + b + c) > 0 && (discrim < 0 || a * c < 0 || b / a > 0 || b / a < -2))
                    return;
                // solve quadratic
                float q = b > 0 ? -0.5f * (b + (float)Math.Sqrt(discrim)) : -0.5f * (b - (float)Math.Sqrt(discrim));
                // check first solution
                float Axy = A[X] * Q[Y] - A[Y] * Q[X];
                float u = q / a;
                if (u >= 0 && u <= 1)
                {
                    float d = u * Axy - Cyx;
                    float v = -(u * Bxy + Ryx) / d;
                    if (v >= 0 && v <= 1)
                    {
                        float t = (A[X] * u * v + B[X] * u + C[X] * v - R[X]) / Q[X];
                        if (r.isInside(t))
                        {
                            r.setMax(t);
                            state.setIntersection(primID, u, v);
                        }
                    }
                }
                u = c / q;
                if (u >= 0 && u <= 1)
                {
                    float d = u * Axy - Cyx;
                    float v = -(u * Bxy + Ryx) / d;
                    if (v >= 0 && v <= 1)
                    {
                        float t = (A[X] * u * v + B[X] * u + C[X] * v - R[X]) / Q[X];
                        if (r.isInside(t))
                        {
                            r.setMax(t);
                            state.setIntersection(primID, u, v);
                        }
                    }
                }
            }
        }
Beispiel #14
0
 public void intersectPrimitive(Ray r, int primID, IntersectionState state)
 {
     // intersect in local space
     float rd2x = r.dx * r.dx;
     float rd2y = r.dy * r.dy;
     float rd2z = r.dz * r.dz;
     float ro2x = r.ox * r.ox;
     float ro2y = r.oy * r.oy;
     float ro2z = r.oz * r.oz;
     // compute some common factors
     double alpha = rd2x + rd2y + rd2z;
     double beta = 2 * (r.ox * r.dx + r.oy * r.dy + r.oz * r.dz);
     double gamma = (ro2x + ro2y + ro2z) - ri2 - ro2;
     // setup quartic coefficients
     double A = alpha * alpha;
     double B = 2 * alpha * beta;
     double C = beta * beta + 2 * alpha * gamma + 4 * ro2 * rd2z;
     double D = 2 * beta * gamma + 8 * ro2 * r.oz * r.dz;
     double E = gamma * gamma + 4 * ro2 * ro2z - 4 * ro2 * ri2;
     // solve equation
     double[] t = Solvers.solveQuartic(A, B, C, D, E);
     if (t != null)
     {
         // early rejection
         if (t[0] >= r.getMax() || t[t.Length - 1] <= r.getMin())
             return;
         // find first intersection in front of the ray
         for (int i = 0; i < t.Length; i++)
         {
             if (t[i] > r.getMin())
             {
                 r.setMax((float)t[i]);
                 state.setIntersection(0, 0, 0);
                 return;
             }
         }
     }
 }
Beispiel #15
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            // ray patch intersection
            float[] stack = state.getRobustStack();
            int STACKSIZE = 64;
            {
                // init patch
                float[] patch = patches[primID];
                for (int i = 0; i < 4 * 4 * 3; i++)
                    stack[i] = patch[i];
                stack[48] = float.PositiveInfinity; // bbox size
                stack[49] = 0; // umin
                stack[50] = 0; // vmin
                stack[51] = 1; // umax
                stack[52] = 1; // vmax
            }
            int stackpos = 0;
            float orgX = r.ox, invDirX = 1 / r.dx;
            float orgY = r.oy, invDirY = 1 / r.dy;
            float orgZ = r.oz, invDirZ = 1 / r.dz;
            float t1, t2;
            while (stackpos >= 0)
            {
                float intervalMin = r.getMin();
                float intervalMax = r.getMax();
                // x-axis bbox
                float minx = stack[stackpos + 0];
                float maxx = stack[stackpos + 0];
                for (int j = 1, idx = stackpos + 3; j < 4 * 4; j++, idx += 3)
                {
                    if (minx > stack[idx])
                        minx = stack[idx];
                    if (maxx < stack[idx])
                        maxx = stack[idx];
                }
                t1 = (minx - orgX) * invDirX;
                t2 = (maxx - orgX) * invDirX;
                if (invDirX > 0)
                {
                    if (t1 > intervalMin)
                        intervalMin = t1;
                    if (t2 < intervalMax)
                        intervalMax = t2;
                }
                else
                {
                    if (t2 > intervalMin)
                        intervalMin = t2;
                    if (t1 < intervalMax)
                        intervalMax = t1;
                }
                if (intervalMin > intervalMax)
                {
                    stackpos -= STACKSIZE;
                    continue;
                }
                // y-axis bbox
                float miny = stack[stackpos + 1];
                float maxy = stack[stackpos + 1];
                for (int j = 1, idx = stackpos + 4; j < 4 * 4; j++, idx += 3)
                {
                    if (miny > stack[idx])
                        miny = stack[idx];
                    if (maxy < stack[idx])
                        maxy = stack[idx];
                }
                t1 = (miny - orgY) * invDirY;
                t2 = (maxy - orgY) * invDirY;
                if (invDirY > 0)
                {
                    if (t1 > intervalMin)
                        intervalMin = t1;
                    if (t2 < intervalMax)
                        intervalMax = t2;
                }
                else
                {
                    if (t2 > intervalMin)
                        intervalMin = t2;
                    if (t1 < intervalMax)
                        intervalMax = t1;
                }
                if (intervalMin > intervalMax)
                {
                    stackpos -= STACKSIZE;
                    continue;
                }
                // z-axis bbox
                float minz = stack[stackpos + 2];
                float maxz = stack[stackpos + 2];
                for (int j = 1, idx = stackpos + 5; j < 4 * 4; j++, idx += 3)
                {
                    if (minz > stack[idx])
                        minz = stack[idx];
                    if (maxz < stack[idx])
                        maxz = stack[idx];
                }

                t1 = (minz - orgZ) * invDirZ;
                t2 = (maxz - orgZ) * invDirZ;
                if (invDirZ > 0)
                {
                    if (t1 > intervalMin)
                        intervalMin = t1;
                    if (t2 < intervalMax)
                        intervalMax = t2;
                }
                else
                {
                    if (t2 > intervalMin)
                        intervalMin = t2;
                    if (t1 < intervalMax)
                        intervalMax = t1;
                }

                if (intervalMin > intervalMax)
                {
                    stackpos -= STACKSIZE;
                    continue;
                }
                // intersection was found - keep going
                float size = (maxx - minx) + (maxy - miny) + (maxz - minz);
                if (ByteUtil.floatToRawIntBits(stack[stackpos + 48]) == ByteUtil.floatToRawIntBits(size))
                {
                    // L1 norm is 0, we are done
                    r.setMax(intervalMin);
                    state.setIntersection(primID, stack[stackpos + 49], stack[stackpos + 50]);
                    stackpos -= STACKSIZE;
                    continue;
                }
                // not small enough yet - subdivide
                // lets pick a subdivision axis first:
                float sizeu = 0;
                float sizev = 0;
                for (int i = 0; i < 3; i++)
                {
                    sizeu += System.Math.Abs(stack[stackpos + (0 * 4 + 3) * 3 + i] - stack[stackpos + i]);
                    sizev += System.Math.Abs(stack[stackpos + (3 * 4 + 0) * 3 + i] - stack[stackpos + i]);
                }

                if (sizeu > sizev)
                {
                    // split in U direction
                    for (int i = 0; i < 4; i++)
                    {
                        for (int axis = 0; axis < 3; axis++)
                        {
                            // load data
                            float p0 = stack[stackpos + (i * 4 + 0) * 3 + axis];
                            float p1 = stack[stackpos + (i * 4 + 1) * 3 + axis];
                            float p2 = stack[stackpos + (i * 4 + 2) * 3 + axis];
                            float p3 = stack[stackpos + (i * 4 + 3) * 3 + axis];
                            // Split curve in the middle
                            float q0 = p0;
                            float q1 = (p0 + p1) * 0.5f;
                            float q2 = q1 * 0.5f + (p1 + p2) * 0.25f;
                            float r3 = p3;
                            float r2 = (p2 + p3) * 0.5f;
                            float r1 = r2 * 0.5f + (p1 + p2) * 0.25f;
                            float q3 = (q2 + r1) * 0.5f;
                            float r0 = q3;
                            // load new curve data into the stack
                            stack[stackpos + (i * 4 + 0) * 3 + axis] = q0;
                            stack[stackpos + (i * 4 + 1) * 3 + axis] = q1;
                            stack[stackpos + (i * 4 + 2) * 3 + axis] = q2;
                            stack[stackpos + (i * 4 + 3) * 3 + axis] = q3;
                            stack[stackpos + STACKSIZE + (i * 4 + 0) * 3 + axis] = r0;
                            stack[stackpos + STACKSIZE + (i * 4 + 1) * 3 + axis] = r1;
                            stack[stackpos + STACKSIZE + (i * 4 + 2) * 3 + axis] = r2;
                            stack[stackpos + STACKSIZE + (i * 4 + 3) * 3 + axis] = r3;
                        }
                    }
                    // copy current bbox size
                    stack[stackpos + 48] = stack[stackpos + STACKSIZE + 48] = size;
                    // finally - split uv ranges
                    float umin = stack[stackpos + 49];
                    float umax = stack[stackpos + 51];
                    stack[stackpos + 49] = umin;
                    stack[stackpos + STACKSIZE + 50] = stack[stackpos + 50];
                    stack[stackpos + 51] = stack[stackpos + STACKSIZE + 49] = (umin + umax) * 0.5f;
                    stack[stackpos + STACKSIZE + 51] = umax;
                    stack[stackpos + STACKSIZE + 52] = stack[stackpos + 52];
                }
                else
                {
                    // split in V direction
                    for (int i = 0; i < 4; i++)
                    {
                        for (int axis = 0; axis < 3; axis++)
                        {
                            // load data
                            float p0 = stack[stackpos + (0 * 4 + i) * 3 + axis];
                            float p1 = stack[stackpos + (1 * 4 + i) * 3 + axis];
                            float p2 = stack[stackpos + (2 * 4 + i) * 3 + axis];
                            float p3 = stack[stackpos + (3 * 4 + i) * 3 + axis];
                            // Split curve in the middle
                            float q0 = p0;
                            float q1 = (p0 + p1) * 0.5f;
                            float q2 = q1 * 0.5f + (p1 + p2) * 0.25f;
                            float r3 = p3;
                            float r2 = (p2 + p3) * 0.5f;
                            float r1 = r2 * 0.5f + (p1 + p2) * 0.25f;
                            float q3 = (q2 + r1) * 0.5f;
                            float r0 = q3;
                            // load new curve data into the stack
                            stack[stackpos + (0 * 4 + i) * 3 + axis] = q0;
                            stack[stackpos + (1 * 4 + i) * 3 + axis] = q1;
                            stack[stackpos + (2 * 4 + i) * 3 + axis] = q2;
                            stack[stackpos + (3 * 4 + i) * 3 + axis] = q3;
                            stack[stackpos + STACKSIZE + (0 * 4 + i) * 3 + axis] = r0;
                            stack[stackpos + STACKSIZE + (1 * 4 + i) * 3 + axis] = r1;
                            stack[stackpos + STACKSIZE + (2 * 4 + i) * 3 + axis] = r2;
                            stack[stackpos + STACKSIZE + (3 * 4 + i) * 3 + axis] = r3;
                        }
                    }
                    // copy current bbox size
                    stack[stackpos + 48] = stack[stackpos + STACKSIZE + 48] = size;
                    // finally - split uv ranges
                    float vmin = stack[stackpos + 50];
                    float vmax = stack[stackpos + 52];
                    stack[stackpos + STACKSIZE + 49] = stack[stackpos + 49];
                    stack[stackpos + 50] = vmin;
                    stack[stackpos + 52] = stack[stackpos + STACKSIZE + 50] = (vmin + vmax) * 0.5f;
                    stack[stackpos + STACKSIZE + 51] = stack[stackpos + 51];
                    stack[stackpos + STACKSIZE + 52] = vmax;
                }
                stackpos += STACKSIZE;
            }
        }