private BoundDynamicIndexerAccess TransformDynamicIndexerAccess(BoundDynamicIndexerAccess indexerAccess, ArrayBuilder <BoundExpression> stores, ArrayBuilder <LocalSymbol> temps)
        {
            BoundExpression loweredReceiver;

            if (CanChangeValueBetweenReads(indexerAccess.ReceiverOpt))
            {
                BoundAssignmentOperator assignmentToTemp;
                var temp = _factory.StoreToTemp(VisitExpression(indexerAccess.ReceiverOpt), out assignmentToTemp);
                stores.Add(assignmentToTemp);
                temps.Add(temp.LocalSymbol);
                loweredReceiver = temp;
            }
            else
            {
                loweredReceiver = indexerAccess.ReceiverOpt;
            }

            var arguments        = indexerAccess.Arguments;
            var loweredArguments = new BoundExpression[arguments.Length];

            for (int i = 0; i < arguments.Length; i++)
            {
                if (CanChangeValueBetweenReads(arguments[i]))
                {
                    BoundAssignmentOperator assignmentToTemp;
                    var temp = _factory.StoreToTemp(VisitExpression(arguments[i]), out assignmentToTemp, indexerAccess.ArgumentRefKindsOpt.RefKinds(i) != RefKind.None ? RefKind.Ref : RefKind.None);
                    stores.Add(assignmentToTemp);
                    temps.Add(temp.LocalSymbol);
                    loweredArguments[i] = temp;
                }
                else
                {
                    loweredArguments[i] = arguments[i];
                }
            }

            return(new BoundDynamicIndexerAccess(
                       indexerAccess.Syntax,
                       loweredReceiver,
                       loweredArguments.AsImmutableOrNull(),
                       indexerAccess.ArgumentNamesOpt,
                       indexerAccess.ArgumentRefKindsOpt,
                       indexerAccess.ApplicableIndexers,
                       indexerAccess.Type));
        }
Beispiel #2
0
        internal static ImmutableArray <BoundExpression> GetCallSiteArguments(BoundExpression callSiteFieldAccess, BoundExpression receiver, ImmutableArray <BoundExpression> arguments, BoundExpression right)
        {
            var result = new BoundExpression[1 + (receiver != null ? 1 : 0) + arguments.Length + (right != null ? 1 : 0)];
            int j      = 0;

            result[j++] = callSiteFieldAccess;

            if (receiver != null)
            {
                result[j++] = receiver;
            }

            arguments.CopyTo(result, j);
            j += arguments.Length;

            if (right != null)
            {
                result[j++] = right;
            }

            return(result.AsImmutableOrNull());
        }
        private BoundIndexerAccess TransformIndexerAccess(BoundIndexerAccess indexerAccess, ArrayBuilder <BoundExpression> stores, ArrayBuilder <LocalSymbol> temps)
        {
            var receiverOpt = indexerAccess.ReceiverOpt;

            Debug.Assert(receiverOpt != null);

            BoundExpression transformedReceiver;

            if (CanChangeValueBetweenReads(receiverOpt))
            {
                BoundExpression rewrittenReceiver = VisitExpression(receiverOpt);

                BoundAssignmentOperator assignmentToTemp;

                // SPEC VIOLATION: It is not very clear when receiver of constrained callvirt is dereferenced - when pushed (in lexical order),
                // SPEC VIOLATION: or when actual call is executed. The actual behavior seems to be implementation specific in different JITs.
                // SPEC VIOLATION: To not depend on that, the right thing to do here is to store the value of the variable
                // SPEC VIOLATION: when variable has reference type (regular temp), and store variable's location when it has a value type. (ref temp)
                // SPEC VIOLATION: in a case of unconstrained generic type parameter a runtime test (default(T) == null) would be needed
                // SPEC VIOLATION: However, for compatibility with Dev12 we will continue treating all generic type parameters, constrained or not,
                // SPEC VIOLATION: as value types.
                var variableRepresentsLocation = rewrittenReceiver.Type.IsValueType || rewrittenReceiver.Type.Kind == SymbolKind.TypeParameter;

                var receiverTemp = _factory.StoreToTemp(rewrittenReceiver, out assignmentToTemp, refKind: variableRepresentsLocation ? RefKind.Ref : RefKind.None);
                transformedReceiver = receiverTemp;
                stores.Add(assignmentToTemp);
                temps.Add(receiverTemp.LocalSymbol);
            }
            else
            {
                transformedReceiver = VisitExpression(receiverOpt);
            }

            // Dealing with the arguments is a bit tricky because they can be named out-of-order arguments;
            // we have to preserve both the source-code order of the side effects and the side effects
            // only being executed once.
            //
            // This is a subtly different problem than the problem faced by the conventional call
            // rewriter; with the conventional call rewriter we already know that the side effects
            // will only be executed once because the arguments are only being pushed on the stack once.
            // In a compound equality operator on an indexer the indices are placed on the stack twice.
            // That is to say, if you have:
            //
            // C().M(z : Z(), x : X(), y : Y())
            //
            // then we can rewrite that into
            //
            // tempc = C()
            // tempz = Z()
            // tempc.M(X(), Y(), tempz)
            //
            // See, we can optimize away two of the temporaries, for x and y. But we cannot optimize away any of the
            // temporaries in
            //
            // C().Collection[z : Z(), x : X(), y : Y()] += 1;
            //
            // because we have to ensure not just that Z() happens first, but in addition that X() and Y() are only
            // called once.  We have to generate this as
            //
            // tempc = C().Collection
            // tempz = Z()
            // tempx = X()
            // tempy = Y()
            // tempc[tempx, tempy, tempz] = tempc[tempx, tempy, tempz] + 1;
            //
            // Fortunately arguments to indexers are never ref or out, so we don't need to worry about that.
            // However, we can still do the optimization where constants are not stored in
            // temporaries; if we have
            //
            // C().Collection[z : 123, y : Y(), x : X()] += 1;
            //
            // Then we can generate that as
            //
            // tempc = C().Collection
            // tempx = X()
            // tempy = Y()
            // tempc[tempx, tempy, 123] = tempc[tempx, tempy, 123] + 1;

            ImmutableArray <BoundExpression> rewrittenArguments = VisitList(indexerAccess.Arguments);

            SyntaxNode               syntax           = indexerAccess.Syntax;
            PropertySymbol           indexer          = indexerAccess.Indexer;
            ImmutableArray <RefKind> argumentRefKinds = indexerAccess.ArgumentRefKindsOpt;
            bool expanded = indexerAccess.Expanded;
            ImmutableArray <int> argsToParamsOpt = indexerAccess.ArgsToParamsOpt;

            ImmutableArray <ParameterSymbol> parameters = indexer.Parameters;

            BoundExpression[] actualArguments = new BoundExpression[parameters.Length]; // The actual arguments that will be passed; one actual argument per formal parameter.
            ArrayBuilder <BoundAssignmentOperator> storesToTemps = ArrayBuilder <BoundAssignmentOperator> .GetInstance(rewrittenArguments.Length);

            ArrayBuilder <RefKind> refKinds = ArrayBuilder <RefKind> .GetInstance(parameters.Length, RefKind.None);

            // Step one: Store everything that is non-trivial into a temporary; record the
            // stores in storesToTemps and make the actual argument a reference to the temp.
            // Do not yet attempt to deal with params arrays or optional arguments.
            BuildStoresToTemps(
                expanded,
                argsToParamsOpt,
                parameters,
                argumentRefKinds,
                rewrittenArguments,
                forceLambdaSpilling: true, // lambdas must produce exactly one delegate so they must be spilled into a temp
                actualArguments,
                refKinds,
                storesToTemps);

            // Step two: If we have a params array, build the array and fill in the argument.
            if (expanded)
            {
                BoundExpression         array = BuildParamsArray(syntax, indexer, argsToParamsOpt, rewrittenArguments, parameters, actualArguments[actualArguments.Length - 1]);
                BoundAssignmentOperator storeToTemp;
                var boundTemp = _factory.StoreToTemp(array, out storeToTemp);
                stores.Add(storeToTemp);
                temps.Add(boundTemp.LocalSymbol);
                actualArguments[actualArguments.Length - 1] = boundTemp;
            }

            // Step three: Now fill in the optional arguments. (Dev11 uses the getter for optional arguments in
            // compound assignments, but for deconstructions we use the setter if the getter is missing.)
            var accessor = indexer.GetOwnOrInheritedGetMethod() ?? indexer.GetOwnOrInheritedSetMethod();

            InsertMissingOptionalArguments(syntax, accessor.Parameters, actualArguments, refKinds);

            // For a call, step four would be to optimize away some of the temps.  However, we need them all to prevent
            // duplicate side-effects, so we'll skip that step.

            if (indexer.ContainingType.IsComImport)
            {
                RewriteArgumentsForComCall(parameters, actualArguments, refKinds, temps);
            }

            rewrittenArguments = actualArguments.AsImmutableOrNull();

            foreach (BoundAssignmentOperator tempAssignment in storesToTemps)
            {
                temps.Add(((BoundLocal)tempAssignment.Left).LocalSymbol);
                stores.Add(tempAssignment);
            }

            storesToTemps.Free();
            argumentRefKinds = GetRefKindsOrNull(refKinds);
            refKinds.Free();

            // This is a temporary object that will be rewritten away before the lowering completes.
            return(new BoundIndexerAccess(
                       syntax,
                       transformedReceiver,
                       indexer,
                       rewrittenArguments,
                       default(ImmutableArray <string>),
                       argumentRefKinds,
                       false,
                       default(ImmutableArray <int>),
                       null,
                       indexerAccess.UseSetterForDefaultArgumentGeneration,
                       indexerAccess.Type));
        }
        private BoundExpression BindAnonymousObjectCreation(AnonymousObjectCreationExpressionSyntax node, DiagnosticBag diagnostics)
        {
            //  prepare
            var  initializers = node.Initializers;
            int  fieldCount   = initializers.Count;
            bool hasError     = false;

            //  bind field initializers
            BoundExpression[]    boundExpressions = new BoundExpression[fieldCount];
            AnonymousTypeField[] fields           = new AnonymousTypeField[fieldCount];
            CSharpSyntaxNode[]   fieldSyntaxNodes = new CSharpSyntaxNode[fieldCount];

            // WARNING: Note that SemanticModel.GetDeclaredSymbol for field initializer node relies on
            //          the fact that the order of properties in anonymous type template corresponds
            //          1-to-1 to the appropriate filed initializer syntax nodes; This means such
            //          correspondence must be preserved all the time including erroneous scenarios

            // set of names already used
            var uniqueFieldNames = PooledHashSet <string> .GetInstance();

            for (int i = 0; i < fieldCount; i++)
            {
                AnonymousObjectMemberDeclaratorSyntax fieldInitializer = initializers[i];
                NameEqualsSyntax nameEquals = fieldInitializer.NameEquals;
                ExpressionSyntax expression = fieldInitializer.Expression;

                SyntaxToken nameToken = default(SyntaxToken);
                if (nameEquals != null)
                {
                    nameToken = nameEquals.Name.Identifier;
                }
                else
                {
                    if (!IsAnonymousTypeMemberExpression(expression))
                    {
                        hasError = true;
                        diagnostics.Add(ErrorCode.ERR_InvalidAnonymousTypeMemberDeclarator, expression.GetLocation());
                    }

                    nameToken = expression.ExtractAnonymousTypeMemberName();
                }

                hasError           |= expression.HasErrors;
                boundExpressions[i] = this.BindValue(expression, diagnostics, BindValueKind.RValue);

                //  check the name to be unique
                string fieldName = null;
                if (nameToken.Kind() == SyntaxKind.IdentifierToken)
                {
                    fieldName = nameToken.ValueText;
                    if (!uniqueFieldNames.Add(fieldName))
                    {
                        //  name duplication
                        Error(diagnostics, ErrorCode.ERR_AnonymousTypeDuplicatePropertyName, fieldInitializer);
                        hasError  = true;
                        fieldName = null;
                    }
                }
                else
                {
                    // there is something wrong with field's name
                    hasError = true;
                }

                //  calculate the expression's type and report errors if needed
                TypeSymbol fieldType = GetAnonymousTypeFieldType(boundExpressions[i], fieldInitializer, diagnostics, ref hasError);

                // build anonymous type field descriptor
                fieldSyntaxNodes[i] = (nameToken.Kind() == SyntaxKind.IdentifierToken) ? (CSharpSyntaxNode)nameToken.Parent : fieldInitializer;
                // https://github.com/dotnet/roslyn/issues/24018: Initial binding should set NullableAnnotation.Unknown
                NullableAnnotation nullableAnnotation;
                switch (((CSharpParseOptions)node.SyntaxTree?.Options)?.IsFeatureEnabled(MessageID.IDS_FeatureNullableReferenceTypes))
                {
                case true:
                    nullableAnnotation = fieldType.IsReferenceType ? NullableAnnotation.Annotated : NullableAnnotation.NotAnnotated;
                    break;

                case false:
                    nullableAnnotation = NullableAnnotation.NotAnnotated;
                    break;

                default:
                    nullableAnnotation = NullableAnnotation.Unknown;
                    break;
                }

                fields[i] = new AnonymousTypeField(
                    fieldName == null ? "$" + i.ToString() : fieldName,
                    fieldSyntaxNodes[i].Location,
                    TypeSymbolWithAnnotations.Create(fieldType, nullableAnnotation));

                //  NOTE: ERR_InvalidAnonymousTypeMemberDeclarator (CS0746) would be generated by parser if needed
            }

            uniqueFieldNames.Free();

            //  Create anonymous type
            AnonymousTypeManager    manager       = this.Compilation.AnonymousTypeManager;
            AnonymousTypeDescriptor descriptor    = new AnonymousTypeDescriptor(fields.AsImmutableOrNull(), node.NewKeyword.GetLocation());
            NamedTypeSymbol         anonymousType = manager.ConstructAnonymousTypeSymbol(descriptor);

            // declarators - bound nodes created for providing semantic info
            // on anonymous type fields having explicitly specified name
            ArrayBuilder <BoundAnonymousPropertyDeclaration> declarators =
                ArrayBuilder <BoundAnonymousPropertyDeclaration> .GetInstance();

            for (int i = 0; i < fieldCount; i++)
            {
                NameEqualsSyntax explicitName = initializers[i].NameEquals;
                if (explicitName != null)
                {
                    AnonymousTypeField field = fields[i];
                    if (field.Name != null)
                    {
                        //  get property symbol and create a bound property declaration node
                        foreach (var symbol in anonymousType.GetMembers(field.Name))
                        {
                            if (symbol.Kind == SymbolKind.Property)
                            {
                                declarators.Add(new BoundAnonymousPropertyDeclaration(fieldSyntaxNodes[i], (PropertySymbol)symbol, field.Type.TypeSymbol));
                                break;
                            }
                        }
                    }
                }
            }

            // check if anonymous object creation is allowed in this context
            if (!this.IsAnonymousTypesAllowed())
            {
                Error(diagnostics, ErrorCode.ERR_AnonymousTypeNotAvailable, node.NewKeyword);
                hasError = true;
            }

            //  Finally create a bound node
            return(new BoundAnonymousObjectCreationExpression(
                       node,
                       anonymousType.InstanceConstructors[0],
                       boundExpressions.AsImmutableOrNull(),
                       declarators.ToImmutableAndFree(),
                       anonymousType,
                       hasError));
        }