Beispiel #1
0
        public List <ISpatialmHGResult> SpatialmHGWrapper3D(List <Tuple <double, double, double, bool> > input, bool runViaAzure = false)
        {
            var        coordinates = input.Select(c => (ICoordinate) new Coordinate3D(c.Item1, c.Item2, c.Item3)).ToList();
            Normalizer nrm         = new Normalizer(coordinates);
            var        normcoords  = nrm.Normalize(coordinates).Select(c => (Coordinate3D)c).ToList();
            var        labels      = input.Select(c => c.Item4).ToList();

            InitializeMHG(labels);
            int idx       = -1;
            var solutions = new ConcurrentPriorityQueue <double, SpatialmHGResult3D>();
            var planeList = new ConcurrentPriorityQueue <double, Plane>(); //minheap based, smaller is better

            //Foreach perpendicular bisector plane
            for (var i = 0; i < coordinates.Count; i++)
            {
                for (var j = 0; j < coordinates.Count; j++)
                {
                    if (labels[i] != labels[j])
                    {
                        //Reduce to 2D problem
                        var plane = Plane.Bisector(normcoords[i], normcoords[j]);
                        planeList.Enqueue(1.0, plane);
                    }
                }
            }

            var numPlanes = planeList.Count();

            if ((Config.ActionList & Actions.Search_EmpricalSampling) != 0)
            {
                var problem     = normcoords.Zip(labels, (a, b) => new Tuple <ICoordinate, bool>(a, b)).ToList();
                var gr          = new Gridding();
                var problemSize = MathExtensions.Binomial(numPlanes, 3) + MathExtensions.Binomial(numPlanes, 2) + numPlanes + 1;
                gr.GenerateEmpricialDensityGrid((long)Math.Min(problemSize, 100000), problem);
                var results = new ConcurrentPriorityQueue <double, ISpatialmHGResult>();
                Parallel.ForEach(gr.GetPivots(), pivot =>
                {
                    var binvec = problem.OrderBy(c => c.Item1.EuclideanDistance(pivot)).Select(c => c.Item2).ToArray();
                    var res    = mHGJumper.minimumHypergeometric(binvec);
                    results.Enqueue(res.Item1, new SpatialmHGResult3D(res.Item1, res.Item2, (Coordinate3D)pivot));
                    while (results.Count > Config.GetTopKResults)
                    {
                        results.TryDequeue(out var junk);
                    }
                });
                return(results.Select(v => v.Value).ToList());
            }

            if ((Config.ActionList & Actions.Search_CellSkipping) != 0)
            {
                if (runViaAzure)
                {
                    var fileList = new List <string>();
                    foreach (var file in Directory.EnumerateFiles(@"3D\Planes\"))
                    {
                        File.Delete(file);
                    }
                    foreach (var file in Directory.EnumerateFiles(@"3D\2dProblems\"))
                    {
                        File.Delete(file);
                    }
                    var asList = planeList.ToList();
                    Parallel.ForEach(asList, currPlane =>
                    {
                        var currIdx = Interlocked.Increment(ref idx);
                        Console.Write($"\r\r\r\r\r\rGenerating 2D projection {currIdx}/{numPlanes}.");
                        var plane = currPlane.Value;

                        if (StaticConfigParams.WriteToCSV)
                        {
                            Config.Log.WriteLine("Selected plane {0}/{1} at distance {2}", currIdx, numPlanes, currPlane.Key);
                        }
                        var subProblemIn2D  = plane.ProjectOntoAndRotate(normcoords, out PrincipalComponentAnalysis pca);
                        pca.NumberOfOutputs = 3; //project back to 3D
                        pca.Save($@"3D\PCA\pca{currIdx}.bin");
                        Generics.SaveToCSV(plane, $@"3D\Planes\plane{currIdx}.csv", true);
                        Generics.SaveToCSV(subProblemIn2D.Zip(labels, (c, l) => c.ToString() + "," + l), $@"3D\2dProblems\coords{currIdx}.csv", true);
                        fileList.Add($@"3D\2dProblems\coords{currIdx}.csv");
                    });
                    Console.WriteLine(@"Done. Initializing Batch pool.");
                    AzureBatchExecution.MainAsync(fileList).Wait();
                }
                else
                {
                    while (planeList.TryDequeue(out var currPlane))
                    {
                        var plane = currPlane.Value;
                        idx++;
                        if (StaticConfigParams.WriteToCSV)
                        {
                            Generics.SaveToCSV(plane, $@"Planes\plane{idx}.csv", true);
                        }
                        Config.Log.WriteLine("Selected plane {0}/{1} at distance {2}", idx, numPlanes, currPlane.Key);
                        var subProblemIn2D = plane.ProjectOntoAndRotate(normcoords, out PrincipalComponentAnalysis pca);
                        pca.NumberOfOutputs = 3; //project back to 3D
                                                 //Solve 2D problem
                        StaticConfigParams.filenamesuffix = idx.ToString();
                        var res = Solve2DProblem(subProblemIn2D, labels, normcoords, pca);
                        foreach (var mHGresult2D in res)
                        {
                            var projectedResult = new SpatialmHGResult3D(mHGresult2D, pca, idx);
                            solutions.Enqueue(projectedResult.pvalue, projectedResult);
                        }
                        solutions.TryPeek(out var bestCell);
                        var bestCellCenter  = bestCell.Value.GetCenter();
                        var remainingPlanes = planeList.Select(t => t.Value).ToList();
                        planeList.Clear();
                        foreach (var p in remainingPlanes)
                        {
                            planeList.Enqueue(bestCellCenter.DistanceToPlane(p), p);
                        }
                    }
                }

                //Combine 2D solutions
                var combinedResultsNaive = new List <SpatialmHGResult3D>();
                for (var i = 0; i < Config.GetTopKResults; i++)
                {
                    KeyValuePair <double, SpatialmHGResult3D> bestCell;
                    solutions.TryDequeue(out bestCell);
                    if (bestCell.Key <= Config.SIGNIFICANCE_THRESHOLD)
                    {
                        bestCell.Value.Denormalize(nrm);
                        combinedResultsNaive.Add(bestCell.Value);
                    }
                    else
                    {
                        break;
                    }
                }
                Config.Log.updater?.Wait();
                return(combinedResultsNaive.Cast <ISpatialmHGResult>().ToList());
            }

            return(null);
        }
Beispiel #2
0
        private List <SpatialmHGResult> Solve2DProblem(List <Coordinate> coords, List <bool> labels, List <Coordinate3D> projectedFrom = null, PrincipalComponentAnalysis pca = null)
        {
            var T = new Tesselation(coords, labels, new List <string>(), Config)
            {
                pca = pca
            };

            if (projectedFrom != null)
            {
                T.ProjectedFrom = projectedFrom.Cast <ICoordinate>().ToList();
            }

            IEnumerable <Cell> topResults = null;

            if ((Config.ActionList & Actions.Search_CellSkipping) != 0)
            {
                topResults = T.GradientSkippingSweep(numStartCoords: 20, numThreads: Environment.ProcessorCount - 1);
                Tesselation.Reset();
                return(topResults.Select(t => new SpatialmHGResult(t)).ToList());
            }
            if ((Config.ActionList & Actions.Search_Exhaustive) != 0)
            {
                T.GenerateFromCoordinates();
            }
            if ((Config.ActionList & Actions.Search_Originals) != 0)
            {
                //mHGOnOriginalPoints(args, coordinates, labels, numcoords);
            }
            if ((Config.ActionList & Actions.Search_FixedSet) != 0)
            {
                /*
                 * var avgX = coordinates.Select(c => c.GetDimension(0)).Average();
                 * var avgY = coordinates.Select(c => c.GetDimension(1)).Average();
                 * var cord = new Coordinate(avgX, avgY);
                 * mHGOnOriginalPoints(args, coordinates, labels, numcoords, new List<ICoordinate>() { cord });
                 */
            }
            if ((Config.ActionList & Actions.Search_LineSweep) != 0)
            {
                T.LineSweep();
            }
            if ((Config.ActionList & Actions.Search_EmpricalSampling) != 0)
            {
                var problem     = coords.Zip(labels, (a, b) => new Tuple <ICoordinate, bool>(a, b)).ToList();
                var gr          = new Gridding();
                var problemSize = MathExtensions.Binomial(Line.Count, 2) + Line.Count + 1;
                gr.GenerateEmpricialDensityGrid((long)Math.Min(problemSize, 100000), problem);
                var results = new ConcurrentPriorityQueue <double, SpatialmHGResult>();
                Parallel.ForEach(gr.GetPivots(), pivot =>
                {
                    var binvec = problem.OrderBy(c => c.Item1.EuclideanDistance(pivot)).Select(c => c.Item2).ToArray();
                    var res    = mHGJumper.minimumHypergeometric(binvec);
                    results.Enqueue(res.Item1, new SpatialmHGResult(res.Item1, res.Item2, (Coordinate)pivot));
                    while (results.Count > Config.GetTopKResults)
                    {
                        results.TryDequeue(out var junk);
                    }
                });
                return(results.Select(v => v.Value).ToList());
            }

            return(null);
        }