/// <summary>
        /// Function to find non-overlapping region over without prediction 
        /// this is really the service function called by both the above
        /// </summary>
        /// <param name="safe_feature_search_ustart"></param>
        /// <param name="safe_feature_search_vstart"></param>
        /// <param name="safe_feature_search_ufinish"></param>
        /// <param name="safe_feature_search_vfinish"></param>
        /// <param name="scene"></param>
        /// <param name="init_feature_search_ustart"></param>
        /// <param name="init_feature_search_vstart"></param>
        /// <param name="init_feature_search_ufinish"></param>
        /// <param name="init_feature_search_vfinish"></param>
        /// <param name="rnd"></param>
        /// <returns></returns>
        public static bool FindNonOverlappingRegionNoPredict(
                       int safe_feature_search_ustart,
                       int safe_feature_search_vstart,
                       int safe_feature_search_ufinish,
                       int safe_feature_search_vfinish,
                       Scene_Single scene,
                       ref int init_feature_search_ustart,
                       ref int init_feature_search_vstart,
                       ref int init_feature_search_ufinish,
                       ref int init_feature_search_vfinish,
                       Random rnd)
        {
            int i, j;
            //if (Camera_Constants.DEBUGDUMP) cout << "FNOLRNP timer start: " << timerlocal << endl;

            int INIT_FEATURE_SEARCH_WIDTH = 80;
            int INIT_FEATURE_SEARCH_HEIGHT = 60;

            // Within this, choose a random region
            // Check that we've got some room for manouevre
            if ((safe_feature_search_ufinish - safe_feature_search_ustart > INIT_FEATURE_SEARCH_WIDTH) &&
                (safe_feature_search_vfinish - safe_feature_search_vstart > INIT_FEATURE_SEARCH_HEIGHT))
            {
                // Try a few times to get one that's not overlapping with any features
                // we know about
                int NUMBER_OF_RANDOM_INIT_FEATURE_SEARCH_REGION_TRIES = 5;
                int FEATURE_SEPARATION_MINIMUM = (int)Camera_Constants.BOXSIZE*3;

                // Build vectors of feature positions so we only have to work them out once
                ArrayList u_array = new ArrayList();
                ArrayList v_array = new ArrayList();

                Feature it;
                for (j = 0; j < scene.get_feature_list().Count; j++)
                {
                    it = (Feature)(scene.get_feature_list())[j];

                    //Vector z = it.get_z();
                    //u_array.Add(z[0]);
                    //v_array.Add(z[1]);


                    if (it.get_feature_measurement_model().fully_initialised_flag) 
                    {
                        //Vector z = it.get_z();
                        //u_array.Add(z[0]);
                        //v_array.Add(z[1]);

                        
	                    Fully_Initialised_Feature_Measurement_Model fifmm = 
	                        (Fully_Initialised_Feature_Measurement_Model)(it.get_feature_measurement_model());
	                    fifmm.func_hi_and_dhi_by_dxp_and_dhi_by_dyi(it.get_y(), scene.get_motion_model().get_xpRES());
	  	  
	                    // Check that this is not a feature behind the camera
                        if (it.get_feature_measurement_model().feature_graphics_type == "THREED_POINT") 
                        {	  
                            fifmm.func_zeroedyigraphics_and_Pzeroedyigraphics(it.get_y(),
							    scene.get_xv(), scene.get_Pxx(), it.get_Pxy(), it.get_Pyy());

	                        if (fifmm.get_zeroedyigraphicsRES()[2] > 0) 
                            {
	                            u_array.Add(fifmm.get_hiRES()[0]);
	                            v_array.Add(fifmm.get_hiRES()[1]);
                            }
                        } 
                        
                    }     
                }

                //if (Camera_Constants.DEBUGDUMP) cout << "FNOLRNP timer after functions: " << timerlocal << endl;
                
                bool feature_found = false;
                i = 0;
                while (i < NUMBER_OF_RANDOM_INIT_FEATURE_SEARCH_REGION_TRIES)
                {                    
                    int u_offset = (int)((safe_feature_search_ufinish - safe_feature_search_ustart 
                                          - INIT_FEATURE_SEARCH_WIDTH) * (rnd.Next(10000) / 10000.0f));
                    int v_offset = (int)((safe_feature_search_vfinish - safe_feature_search_vstart
                                          - INIT_FEATURE_SEARCH_HEIGHT) * (rnd.Next(10000) / 10000.0f));
      
                    init_feature_search_ustart = safe_feature_search_ustart + u_offset;
                    init_feature_search_ufinish = init_feature_search_ustart + INIT_FEATURE_SEARCH_WIDTH;
                    init_feature_search_vstart = safe_feature_search_vstart + v_offset;
                    init_feature_search_vfinish = init_feature_search_vstart + INIT_FEATURE_SEARCH_HEIGHT;

                    bool found_a_feature_in_region_flag = false;

                    // These arrays will be the same size                   
                    float uit, vit;
                    for (j = 0; j < u_array.Count; j++)
                    {
                        uit = (float)u_array[j];
                        vit = (float)v_array[j];

                        if ((uit >= init_feature_search_ustart - FEATURE_SEPARATION_MINIMUM) &&
                            (uit < init_feature_search_ufinish + FEATURE_SEPARATION_MINIMUM) &&
                            (vit >= init_feature_search_vstart - FEATURE_SEPARATION_MINIMUM) &&
                            (vit < init_feature_search_vfinish + FEATURE_SEPARATION_MINIMUM))
                        {
                            found_a_feature_in_region_flag = true;
                            feature_found = true;
	                        break;
	                    }
                    }

                    if (!found_a_feature_in_region_flag) break;
      
                    i++;
                }

                if (!feature_found) 
                {
                    return false;
                }

            }
            else 
            {
                return false;
            }

            return true;
        }
Beispiel #2
0
        /// <summary>
        /// Constructor for partially-initialised features.
        /// </summary>
        /// <param name="id">reference to the feature</param>
        /// <param name="lab"></param>
        /// <param name="list_pos"></param>
        /// <param name="scene"></param>
        /// <param name="h"></param>
        /// <param name="p_i_f_m_m"></param>
        public Feature(classimage_mono id, uint lab, uint list_pos,
                       Scene_Single scene, Vector h,
                       Partially_Initialised_Feature_Measurement_Model p_i_f_m_m,
                       Vector feature_colour)
        {
            feature_measurement_model = p_i_f_m_m;
            partially_initialised_feature_measurement_model = p_i_f_m_m;
            fully_initialised_feature_measurement_model = null;

            // Stuff below substituted from Feature_common
            //   Feature_common(id, lab, list_pos, scene, h);

            feature_constructor_bookeeping();

            identifier = id;
            label = lab;
            position_in_list = list_pos;   // Position of new feature in list
            position_in_total_state_vector = 0; // This should be set properly
            colour = feature_colour;
            //when feature is added 

            // Save the vehicle position where this feature was acquired 
            scene.get_motion_model().func_xp(scene.get_xv());
            //xp_orig = scene.get_motion_model().get_xpRES();
            xp_orig = new Vector(scene.get_motion_model().get_xpRES());

            // Call model functions to calculate feature state, measurement noise
            // and associated Jacobians. Results are stored in RES matrices 

            // First calculate "position state" and Jacobian
            scene.get_motion_model().func_xp(scene.get_xv());
            scene.get_motion_model().func_dxp_by_dxv(scene.get_xv());

            // Now ask the model to initialise the state vector and calculate Jacobians
            // so that I can go and calculate the covariance matrices
            partially_initialised_feature_measurement_model.func_ypi_and_dypi_by_dxp_and_dypi_by_dhi_and_Ri(h, scene.get_motion_model().get_xpRES());

            // State y
            //y = partially_initialised_feature_measurement_model.get_ypiRES();
            y = new Vector(partially_initialised_feature_measurement_model.get_ypiRES());

            // Temp_FS1 will store dypi_by_dxv
            MatrixFixed Temp_FS1 =
                     partially_initialised_feature_measurement_model.get_dypi_by_dxpRES() *
                     scene.get_motion_model().get_dxp_by_dxvRES();

            // Pxy  
            Pxy = scene.get_Pxx() * Temp_FS1.Transpose();

            // Pyy
            Pyy = Temp_FS1 * scene.get_Pxx() * Temp_FS1.Transpose()
                  + partially_initialised_feature_measurement_model.get_dypi_by_dhiRES()
                  * partially_initialised_feature_measurement_model.get_RiRES()
                  * partially_initialised_feature_measurement_model.get_dypi_by_dhiRES().Transpose();

            // Covariances of this feature with others
            int j = 0;
            foreach (Feature it in scene.get_feature_list_noconst())
            {
                if (j < position_in_list)
                {
                    // new Pypiyj = dypi_by_dxv . Pxyj
                    // Size of this is FEATURE_STATE_SIZE(new) by FEATURE_STATE_SIZE(old)
                    MatrixFixed m = it.get_Pxy();
                    MatrixFixed newPyjypi_to_store = (Temp_FS1 * m).Transpose();

                    //add to the list
                    matrix_block_list.Add(newPyjypi_to_store);
                }
                j++;
            }

            known_feature_label = -1;
        }
Beispiel #3
0
        /// <summary>
        /// Fast version of predict filter
        /// </summary>
        /// <param name="scene"></param>
        /// <param name="u">Control vector of accelerations</param>
        /// <param name="delta_t">time step in seconds</param>
        public void predict_filter_fast(Scene_Single scene, Vector u, float delta_t)
        {
            Vector xv = scene.get_xv();

            // Make model calculations: results are stored in RES matrices
            scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t);
            scene.get_motion_model().func_Q(xv, u, delta_t);

            Vector fvRES = scene.get_motion_model().get_fvRES();
            xv.Update(fvRES);

            Motion_Model mm = scene.get_motion_model();
            MatrixFixed Pxx = scene.get_Pxx();
            MatrixFixed dfv_by_dxvRES = mm.get_dfv_by_dxvRES();
            MatrixFixed dfv_by_dxvRES_transposed = dfv_by_dxvRES.Transpose();
            MatrixFixed QxRES = mm.get_QxRES();
            
            Pxx.Update((dfv_by_dxvRES * Pxx * dfv_by_dxvRES_transposed) + QxRES);
                      
            // Change the covariances between vehicle state and feature states 
            foreach (Feature it in scene.feature_list)
            {
                MatrixFixed Pxy = it.get_Pxy();
                Pxy.Update(dfv_by_dxvRES * Pxy);
            }            
            
        }