public void FindIntersectionCandidates(TopoTriangle triangle, HashSet <TopoTriangle> resultList)
 {
     if (triangles != null) // end leaf, test all boxes for intersection
     {
         foreach (TopoTriangle test in triangles)
         {
             if (test != triangle && test.boundingBox.IntersectsBox(triangle.boundingBox))
             {
                 resultList.Add(test);
             }
         }
         return;
     }
     if (left == null)
     {
         return;
     }
     if (triangle.boundingBox.minPoint[dimension] < middlePosition)
     {
         left.FindIntersectionCandidates(triangle, resultList);
     }
     if (triangle.boundingBox.maxPoint[dimension] > middlePosition)
     {
         right.FindIntersectionCandidates(triangle, resultList);
     }
     if (triangle.boundingBox.minPoint[dimension] < middlePosition && triangle.boundingBox.maxPoint[dimension] > middlePosition)
     {
         middle.FindIntersectionCandidates(triangle, resultList);
     }
 }
 public void AddTriangle(TopoTriangle triangle)
 {
     if (left == null && triangles == null)
     {
         triangles = new HashSet <TopoTriangle>();
     }
     if (triangles != null)
     {
         triangles.Add(triangle);
         box.Add(triangle.boundingBox);
         if (triangles.Count > nextTrySplit)
         {
             TrySplit();
         }
     }
     else
     {
         if (triangle.boundingBox.maxPoint[dimension] < middlePosition)
         {
             left.AddTriangle(triangle);
         }
         else if (triangle.boundingBox.minPoint[dimension] > middlePosition)
         {
             right.AddTriangle(triangle);
         }
         else
         {
             middle.AddTriangle(triangle);
         }
     }
 }
Beispiel #3
0
 public void disconnectFace(TopoTriangle face, TopoModel model)
 {
     faces.Remove(face);
     if (faces.Count == 0)
     {
         model.edges.Remove(this);
     }
 }
 public void Add(TopoTriangle triangle)
 {
     triangles.Add(triangle);
     if (tree != null)
     {
         tree.AddTriangle(triangle);
     }
 }
 public bool Remove(TopoTriangle triangle)
 {
     if (tree != null)
     {
         tree.RemoveTriangle(triangle);
     }
     return(triangles.Remove(triangle));
 }
        public bool RemoveTriangle(TopoTriangle triangle)
        {
            TopoTriangleNode node = FindNodeForTriangle(triangle);

            if (node != null)
            {
                return(node.triangles.Remove(triangle));
            }
            return(false);
        }
        public HashSet <TopoTriangle> FindIntersectionCandidates(TopoTriangle triangle)
        {
            if (tree == null)
            {
                PrepareFastSearch();
            }
            HashSet <TopoTriangle> result = new HashSet <TopoTriangle>();

            tree.FindIntersectionCandidates(triangle, result);
            return(result);
        }
Beispiel #8
0
 public TopoTriangle GetFaceExcept(TopoTriangle notThis)
 {
     foreach (TopoTriangle test in faces)
     {
         if (test != notThis)
         {
             return(test);
         }
     }
     return(null);
 }
Beispiel #9
0
        public List <TopoEdge> FindNeighbourEdgesWithOneFace()
        {
            List <TopoEdge> list     = null;
            TopoTriangle    thisFace = faces.First.Value;

            foreach (TopoTriangle face in v1.connectedFacesList)
            {
                if (face == thisFace)
                {
                    continue;
                }
                for (int e = 0; e < 3; e++)
                {
                    TopoEdge testEdge = face.edges[e];
                    if (testEdge.connectedFaces != 1)
                    {
                        continue;
                    }
                    if (testEdge.ContainsVertex(v1))
                    {
                        if (list == null)
                        {
                            list = new List <TopoEdge>();
                        }
                        list.Add(testEdge);
                    }
                }
            }
            foreach (TopoTriangle face in v2.connectedFacesList)
            {
                if (face == thisFace)
                {
                    continue;
                }
                for (int e = 0; e < 3; e++)
                {
                    TopoEdge testEdge = face.edges[e];
                    if (testEdge.connectedFaces != 1)
                    {
                        continue;
                    }
                    if (testEdge.ContainsVertex(v2))
                    {
                        if (list == null)
                        {
                            list = new List <TopoEdge>();
                        }
                        list.Add(testEdge);
                    }
                }
            }
            return(list);
        }
Beispiel #10
0
 public bool SameNormalOrientation(TopoTriangle test)
 {
     for (int i = 0; i < 3; i++)
     {
         for (int j = 0; j < 3; j++)
         {
             if (vertices[i] == test.vertices[j] && vertices[(i + 1) % 3] == test.vertices[(j + 2) % 3])
             {
                 return(true);
             }
         }
     }
     return(false);
 }
Beispiel #11
0
        public int testTriangleSide(TopoTriangle triangle)
        {
            double d1 = VertexDistance(triangle.vertices[0].pos);
            double d2 = VertexDistance(triangle.vertices[1].pos);
            double d3 = VertexDistance(triangle.vertices[2].pos);

            if (d1 >= 0 && d2 >= 0 && d3 >= 0)
            {
                return(1);
            }
            if (d1 <= 0 && d2 <= 0 && d3 <= 0)
            {
                return(-1);
            }
            return(0);
        }
Beispiel #12
0
        public int testTriangleSideFast(TopoTriangle triangle)
        {
            bool d1 = VertexDistance(triangle.vertices[0].pos) > 0;
            bool d2 = VertexDistance(triangle.vertices[1].pos) > 0;
            bool d3 = VertexDistance(triangle.vertices[2].pos) > 0;

            if (d1 && d2 && d3)
            {
                return(1);
            }
            if (d1 == d2 && d2 == d3)
            {
                return(-1);
            }
            return(0);
        }
Beispiel #13
0
        public int NumberOfSharedVertices(TopoTriangle tri)
        {
            int sameVertices = 0;

            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    if (vertices[i] == tri.vertices[j])
                    {
                        sameVertices++;
                        break;
                    }
                }
            }
            return(sameVertices);
        }
Beispiel #14
0
        void TestInplaneOutside()
        {
            TopoModel    model = new TopoModel();
            TopoVertex   v1    = model.addVertex(new RHVector3(0, 0, 0));
            TopoVertex   v2    = model.addVertex(new RHVector3(10, 0, 0));
            TopoVertex   v3    = model.addVertex(new RHVector3(10, 10, 0));
            TopoVertex   v4    = model.addVertex(new RHVector3(11, 1, 0));
            TopoVertex   v5    = model.addVertex(new RHVector3(17, 1, 0));
            TopoVertex   v6    = model.addVertex(new RHVector3(11, 7, 0));
            TopoTriangle t1    = model.AddTriangle(new TopoTriangle(model, v1, v2, v3));
            TopoTriangle t2    = model.AddTriangle(new TopoTriangle(model, v4, v5, v6));

            if (t1.Intersects(t2))
            {
                faildTests++;
                Console.WriteLine("Failed test:TestInplaneOutside");
            }
        }
Beispiel #15
0
        void TestInplaneInsideSameEdgeIntersects()
        {
            TopoModel    model = new TopoModel();
            TopoVertex   v1    = model.addVertex(new RHVector3(0, 0, 0));
            TopoVertex   v2    = model.addVertex(new RHVector3(10, 0, 0));
            TopoVertex   v3    = model.addVertex(new RHVector3(10, 10, 0));
            TopoVertex   v4    = model.addVertex(new RHVector3(1, 1, 0));
            TopoVertex   v5    = model.addVertex(new RHVector3(7, 1, 0));
            TopoVertex   v6    = model.addVertex(new RHVector3(5, 3, 0));
            TopoTriangle t1    = model.AddTriangle(new TopoTriangle(model, v1, v2, v3));
            TopoTriangle t2    = model.AddTriangle(new TopoTriangle(model, v1, v2, v6));

            if (!t1.Intersects(t2))
            {
                faildTests++;
                Console.WriteLine("Failed test:TestInplaneInsideSameEdgeIntersects");
            }
        }
Beispiel #16
0
        void TestInplane3D_1()
        {
            TopoModel    model = new TopoModel();
            TopoVertex   v1    = model.addVertex(new RHVector3(3.67848944664001, -2.6547646522522, 1.38814495312454E-14));
            TopoVertex   v2    = model.addVertex(new RHVector3(1.62981510162354, -1.05116808414459, 1.83297828141877E-14));
            TopoVertex   v3    = model.addVertex(new RHVector3(2.29873323440552, -0.79055267572403, 2.11497486191092E-14));
            TopoVertex   v4    = model.addVertex(new RHVector3(1.63205575942993, -1.05116808414459, 2.78849697113037));
            TopoVertex   v5    = model.addVertex(new RHVector3(0.916237592697144, -1.1297744512558, 1.83297828141877E-14));
            TopoVertex   v6    = model.addVertex(new RHVector3(1.38571500778198, -1.07829427719116, 2.67316389083862));
            TopoTriangle t1    = model.AddTriangle(new TopoTriangle(model, v1, v2, v3));
            TopoTriangle t2    = model.AddTriangle(new TopoTriangle(model, v4, v5, v6));

            if (t1.Intersects(t2))
            {
                faildTests++;
                Console.WriteLine("Failed test:TestInplane3D_1");
            }
        }
Beispiel #17
0
        void TestSharedPointIntersect()
        {
            TopoModel    model = new TopoModel();
            TopoVertex   v1    = model.addVertex(new RHVector3(0, 0, 0));
            TopoVertex   v2    = model.addVertex(new RHVector3(10, 0, 0));
            TopoVertex   v3    = model.addVertex(new RHVector3(5, 5, 0));
            TopoVertex   v4    = model.addVertex(new RHVector3(0, 0, -5));
            TopoVertex   v5    = model.addVertex(new RHVector3(10, 0, -5));
            TopoVertex   v6    = model.addVertex(new RHVector3(5, 0, 5));
            TopoTriangle t1    = model.AddTriangle(new TopoTriangle(model, v1, v2, v3));
            TopoTriangle t2    = model.AddTriangle(new TopoTriangle(model, v1, v5, v6));

            if (!t1.Intersects(t2))
            {
                faildTests++;
                Console.WriteLine("Failed test:TestSharedPointIntersect");
            }
        }
 public TopoTriangleNode FindNodeForTriangle(TopoTriangle triangle)
 {
     if (triangles != null)
     {
         return(this);
     }
     if (triangle.boundingBox.maxPoint[dimension] < middlePosition)
     {
         return(left.FindNodeForTriangle(triangle));
     }
     else if (triangle.boundingBox.minPoint[dimension] > middlePosition)
     {
         return(right.FindNodeForTriangle(triangle));
     }
     else
     {
         return(middle.FindNodeForTriangle(triangle));
     }
 }
Beispiel #19
0
        public TopoTriangle BuildTriangle(TopoModel model)
        {
            TopoVertex sharedPoint = null;
            TopoVertex p1 = null, p2 = null;

            if (edgeA.v1 == edgeB.v1)
            {
                sharedPoint = edgeA.v1;
                p1          = edgeA.v2;
                p2          = edgeB.v2;
            }
            else if (edgeA.v1 == edgeB.v2)
            {
                sharedPoint = edgeA.v1;
                p1          = edgeA.v2;
                p2          = edgeB.v1;
            }
            else if (edgeA.v2 == edgeB.v1)
            {
                sharedPoint = edgeA.v1;
                p1          = edgeA.v1;
                p2          = edgeB.v2;
            }
            else if (edgeA.v2 == edgeB.v2)
            {
                sharedPoint = edgeA.v2;
                p1          = edgeA.v1;
                p2          = edgeB.v1;
            }
            TopoTriangle faceA       = edgeA.faces.First.Value;
            TopoTriangle newTriangle = new TopoTriangle(model, sharedPoint, p1, p2, 0, 0, 1);

            if (newTriangle.SameNormalOrientation(faceA) == false)
            {
                newTriangle.FlipDirection();
            }
            newTriangle.RecomputeNormal();
            model.AddTriangle(newTriangle);
            return(newTriangle);
        }
 public bool Contains(TopoTriangle test)
 {
     return(triangles.Contains(test));
 }
Beispiel #21
0
        private bool IntersectsSharedVertex(TopoVertex shared, TopoVertex[] a, TopoVertex[] b, TopoTriangle tri)
        {
            double d1 = DistanceToPlane(b[0].pos);
            double d2 = DistanceToPlane(b[1].pos);
            // Compute intersection point with plane
            int idx1, idx2;

            DominantAxis(out idx1, out idx2);
            if (Math.Abs(d1) < 1e-8 && Math.Abs(d2) < 1e-8) // In plane
            {
                if (InPlanePointInside(idx1, idx2, b[0].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, b[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLineSmall(idx1, idx2, a[0].pos, a[1].pos, shared.pos, b[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLineSmall(idx1, idx2, a[0].pos, a[1].pos, shared.pos, b[1].pos))
                {
                    return(true);
                }
                return(false);
            }
            if (d1 * d2 > 0)
            {
                return(false);             // Both points on same side, no intersection possible
            }
            double    factor = Math.Abs(d1 / (d1 - d2));
            RHVector3 p1     = b[0].pos; // new RHVector3(normal);
            RHVector3 p2     = b[1].pos; // new RHVector3(normal);

            /*p1.Scale(-d1);
             * p2.Scale(-d2);
             * p1.AddInternal(b[0].pos);
             * p2.AddInternal(b[1].pos);*/
            RHVector3 inter = new RHVector3((1 - factor) * p1.x + factor * p2.x, (1 - factor) * p1.y + factor * p2.y, (1 - factor) * p1.z + factor * p2.z);

            if (inter.Subtract(shared.pos).Length < epsilonZero)
            {
                if (Math.Abs(d1) < epsilonZero || Math.Abs(d2) < epsilonZero)
                {
                    return(false); // Connection ends at shared vertex - does not count as intersection
                }
            }
            if (InPlanePointInside(idx1, idx2, inter))
            {
                return(true);
            }
            if (InPlaneIntersectLineSmall(idx1, idx2, a[0].pos, a[1].pos, shared.pos, inter))
            {
                return(true);
            }
            return(false);
        }
Beispiel #22
0
        private bool IntersectsSharedEdge(TopoVertex[] shared, TopoVertex a, TopoVertex b, TopoTriangle tri)
        {
            // Test if coplanar. If not no intersection is possible
            if (Math.Abs(DistanceToPlane(b.pos)) > epsilonZero)
            {
                return(false);
            }
            int idx2, idx1;

            DominantAxis(out idx1, out idx2);
            if (InPlanePointInside(idx1, idx2, b.pos))
            {
                return(true);
            }
            if (tri.InPlanePointInside(idx1, idx2, a.pos))
            {
                return(true);
            }
            return(false);
        }
Beispiel #23
0
        public bool Intersects(TopoTriangle tri)
        {
            // First detect shared edges for more reliable and faster tests
            TopoVertex[] shared = new TopoVertex[3];
            TopoVertex[] uniqueA = new TopoVertex[3];
            TopoVertex[] uniqueB = new TopoVertex[3];
            int          nShared = 0, nUniqueA = 0, nUniqueB = 0;

            for (int i = 0; i < 3; i++)
            {
                bool isDouble = false;
                for (int j = 0; j < 3; j++)
                {
                    if (vertices[i] == tri.vertices[j])
                    {
                        shared[nShared++] = vertices[i];
                        isDouble          = true;
                        break;
                    }
                }
                if (!isDouble)
                {
                    uniqueA[nUniqueA++] = vertices[i];
                }
            }
            if (nShared > 0)
            {
                for (int i = 0; i < 3; i++)
                {
                    bool isDouble = false;
                    for (int j = 0; j < nShared; j++)
                    {
                        if (tri.vertices[i] == shared[j])
                        {
                            isDouble = true;
                            break;
                        }
                    }
                    if (!isDouble)
                    {
                        uniqueB[nUniqueB++] = tri.vertices[i];
                    }
                }
                if (nShared == 1)
                {
                    return(IntersectsSharedVertex(shared[0], uniqueA, uniqueB, tri));
                }
                if (nShared == 2)
                {
                    return(IntersectsSharedEdge(shared, uniqueA[0], uniqueB[0], tri));
                }
                return(true);
            }
            // Nice to read but unoptimized intersection computation
            RHMatrix3 A  = new RHMatrix3();
            RHVector3 p1 = vertices[1].pos.Subtract(vertices[0].pos);
            RHVector3 p2 = vertices[2].pos.Subtract(vertices[0].pos);

            A.SetXColumn(p1);
            A.SetYColumn(p2);
            RHVector3 P  = new RHVector3(vertices[0].pos);
            RHVector3 q1 = tri.vertices[1].pos.Subtract(tri.vertices[0].pos);
            RHVector3 q2 = tri.vertices[2].pos.Subtract(tri.vertices[0].pos);
            RHVector3 r1 = tri.vertices[0].pos.Subtract(P); // r2 == r1!
            RHVector3 r3 = tri.vertices[2].pos.Subtract(P);

            A.SetZColumn(q1);
            double detAq1 = A.Determinant;

            A.SetZColumn(q2);
            double detAq2 = A.Determinant;
            //A.SetZColumn(q3);
            double detAq3 = detAq1 - detAq2; // A.Determinant;

            A.SetZColumn(r1);
            double detAr1 = A.Determinant;
            //A.SetZColumn(r3);
            double detAr3    = detAr1 + detAq2; // A.Determinant;
            int    intersect = 0;

            if (detAq1 == 0 && detAq2 == 0 && detAq3 == 0) // same plane case
            {
                if (detAr1 != 0)
                {
                    return(false);             // other parallel plance
                }
                // Select plane for computation x-y or x-z based on normal
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                // Test if point inside. 1 test per triangle is enough
                if (InPlanePointInside(idx1, idx2, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[0].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[1].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[2].pos))
                {
                    return(true);
                }
                return(false);
            }
            double beta1 = -1, beta2 = -1, beta3 = -1;

            if (detAq1 != 0)
            {
                beta1 = -detAr1 / detAq1;
                if (beta1 >= epsilonZeroMinus && beta1 <= epsilonOnePlus)
                {
                    intersect = 1;
                }
            }
            if (detAq2 != 0)
            {
                beta2 = -detAr1 / detAq2;
                if (beta2 >= epsilonZeroMinus && beta2 <= epsilonOnePlus)
                {
                    intersect |= 2;
                }
            }
            if (detAq3 != 0)
            {
                beta3 = -detAr3 / detAq3;
                if (beta3 >= epsilonZeroMinus && beta3 <= epsilonOnePlus)
                {
                    intersect |= 4;
                }
            }
            if (intersect == 7)
            { // Special case intersection in one point caused 3 valid betas
                if (Math.Abs(beta1) < epsilonZero)
                {
                    intersect = 6;
                }
                else if (Math.Abs(beta3) < epsilonZero)
                {
                    intersect = 3;
                }
                else
                {
                    intersect = 5;
                }
            }
            //if (intersect == 0) return false; // Lies on wrong side
            RHVector3 T = null, t = null;

            if ((intersect & 1) == 1)
            {
                T = new RHVector3(q1);
                T.Scale(beta1);
                T.AddInternal(tri.vertices[0].pos);
            }
            if ((intersect & 2) == 2)
            {
                if (T == null)
                {
                    T = new RHVector3(q2);
                    T.Scale(beta2);
                    T.AddInternal(tri.vertices[0].pos);
                }
                else
                {
                    q2.Scale(beta2);
                    q2.AddInternal(tri.vertices[0].pos);
                    t = q2.Subtract(T);
                }
            }
            if ((intersect & 4) == 4 && T != null && (t == null || t.Length < epsilonZero))
            {
                RHVector3 q3 = tri.vertices[1].pos.Subtract(tri.vertices[2].pos);
                q3.Scale(beta3);
                q3.AddInternal(tri.vertices[2].pos);
                t = q3.Subtract(T);
            }
            if (t == null)
            {
                return(false);
            }
            if (t.Length < epsilonZero)
            { // Only one point touches the plane
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                return(InPlanePointInside(idx1, idx2, T));
            }
            // Compute intersection points with this triangle
            double d1 = p1.x * t.y - p1.y * t.x;
            double d2 = p1.x * t.z - p1.z * t.x;
            double delta1 = -1, delta2 = -1, delta3 = -1, gamma1 = -1, gamma2 = -1, gamma3 = -1;

            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta1 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma1 = -(p1.x * T.y - p1.y * T.x - p1.x * P.y + p1.y * P.x) / d1;
                }
                else
                {
                    delta1 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma1 = -(p1.x * T.z - p1.z * T.x - p1.x * P.z + p1.z * P.x) / d2;
                }
            }
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta2 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma2 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta2 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma2 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            P.AddInternal(p1);
            p2.SubtractInternal(p1); // p2 is now p3!
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta3 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma3 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta3 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma3 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            // Check for line intersection inside the line. Hits at the vertices to not count!
            if (delta1 >= epsilonZero && delta1 <= epsilonOneMinus && gamma1 >= epsilonZero && gamma1 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta2 >= epsilonZero && delta2 <= epsilonOneMinus && gamma2 >= epsilonZero && gamma2 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta3 >= epsilonZero && delta3 <= epsilonOneMinus && gamma3 >= epsilonZero && gamma3 <= epsilonOneMinus)
            {
                return(true);
            }
            // Test if intersection is inside triangle
            intersect = 0;
            if (delta1 >= epsilonZeroMinus && delta1 <= epsilonOnePlus)
            {
                intersect |= 1;
            }
            if (delta2 >= epsilonZeroMinus && delta2 <= epsilonOnePlus)
            {
                intersect |= 2;
            }
            if (delta3 >= epsilonZeroMinus && delta3 <= epsilonOnePlus)
            {
                intersect |= 4;
            }

            /*   if (gamma1 == 0) gamma1 = -1;
             * if (gamma2 == 0) gamma2 = -1;
             * if (gamma3 == 0) gamma3 = -1;*/
            if (gamma1 == 0)
            {
                intersect &= ~1;
            }
            if (gamma2 == 0)
            {
                intersect &= ~2;
            }
            if (gamma3 == 0)
            {
                intersect &= ~4;
            }

            /*       if ((intersect & 3) == 3) return gamma1 * gamma2 < 0;
             *     if ((intersect & 5) == 5) return gamma1 * gamma3 < 0;
             *     if ((intersect & 6) == 6) return gamma3 * gamma2 < 0;*/
            if ((intersect & 3) == 3)
            {
                if (gamma1 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 5) == 5)
            {
                if (gamma1 * gamma3 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 6) == 6)
            {
                if (gamma3 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            // if (intersect!=0) happens only with numeric problems
            //    return true;
            return(false); // No intersection found :-)
        }
Beispiel #24
0
 public void connectFace(TopoTriangle face)
 {
     faces.AddLast(face);
 }
Beispiel #25
0
        /// <summary>
        /// Splits an edge and changes the connected triangles to maintain
        /// a topological correct system.
        /// </summary>
        /// <param name="model"></param>
        /// <param name="vertex"></param>
        public void InsertVertex(TopoModel model, TopoVertex vertex)
        {
            LinkedList <TopoTriangle> delList   = new LinkedList <TopoTriangle>();
            LinkedList <TopoTriangle> testFaces = new LinkedList <TopoTriangle>();

            foreach (TopoTriangle oldTriangle in faces)
            {
                testFaces.AddLast(oldTriangle);
            }
            foreach (TopoTriangle oldTriangle in testFaces)
            {
                delList.AddLast(oldTriangle);
                for (int i = 0; i < 3; i++)
                {
                    if (oldTriangle.vertices[i] != v1 && oldTriangle.vertices[i] != v2)
                    {
                        TopoTriangle newTriangle = new TopoTriangle(model, v1, vertex, oldTriangle.vertices[i]);
                        if (newTriangle.IsDegenerated())
                        {
                            newTriangle.Unlink(model);
                        }
                        else
                        {
                            // Test orientation
                            for (int e = 0; e < 3; e++)
                            {
                                TopoTriangle neigbour = newTriangle.edges[i].GetFaceExcept(newTriangle);
                                if (neigbour != null)
                                {
                                    if (!newTriangle.SameNormalOrientation(neigbour))
                                    {
                                        newTriangle.FlipDirection();
                                    }
                                    break;
                                }
                            }
                            model.AddTriangle(newTriangle);
                        }
                        newTriangle = new TopoTriangle(model, vertex, v2, oldTriangle.vertices[i]);
                        if (newTriangle.IsDegenerated())
                        {
                            newTriangle.Unlink(model);
                        }
                        else
                        {
                            // Test orientation
                            for (int e = 0; e < 3; e++)
                            {
                                TopoTriangle neigbour = newTriangle.edges[i].GetFaceExcept(newTriangle);
                                if (neigbour != null)
                                {
                                    if (!newTriangle.SameNormalOrientation(neigbour))
                                    {
                                        newTriangle.FlipDirection();
                                    }
                                    break;
                                }
                            }
                            model.AddTriangle(newTriangle);
                        }
                    }
                }
            }
            foreach (TopoTriangle tri in delList)
            {
                tri.Unlink(model);
                model.removeTriangle(tri);
            }
        }
Beispiel #26
0
 public void connectFace(TopoTriangle triangle)
 {
     connectedFacesList.AddLast(triangle);
 }
Beispiel #27
0
        public void addIntersectionToSubmesh(Submesh mesh, TopoTriangle triangle, bool addEdges, int color)
        {
            int[] outside = new int[3];
            int[] inside = new int[3];
            int   nOutside = 0, nInside = 0;
            int   i;

            for (i = 0; i < 3; i++)
            {
                if (VertexDistance(triangle.vertices[i].pos) > 0)
                {
                    outside[nOutside++] = i;
                }
                else
                {
                    inside[nInside++] = i;
                }
            }
            if (nOutside != 1 && nOutside != 2)
            {
                return;
            }
            RHVector3[] intersections  = new RHVector3[3];
            int         nIntersections = 0;

            for (int iInside = 0; iInside < nInside; iInside++)
            {
                for (int iOutside = 0; iOutside < nOutside; iOutside++)
                {
                    RHVector3 v1    = triangle.vertices[inside[iInside]].pos;
                    RHVector3 v2    = triangle.vertices[outside[iOutside]].pos;
                    double    dist1 = VertexDistance(v1);
                    double    dist2 = VertexDistance(v2);
                    double    pos   = Math.Abs(dist1) / Math.Abs(dist2 - dist1);
                    intersections[nIntersections++] = new RHVector3(
                        v1.x + pos * (v2.x - v1.x),
                        v1.y + pos * (v2.y - v1.y),
                        v1.z + pos * (v2.z - v1.z)
                        );
                }
            }
            if (nInside == 2)
            {
                if (outside[0] == 1)
                {
                    mesh.AddTriangle(triangle.vertices[inside[1]].pos, triangle.vertices[inside[0]].pos, intersections[1], color);
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[0], intersections[1], color);
                }
                else
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, triangle.vertices[inside[1]].pos, intersections[0], color);
                    mesh.AddTriangle(triangle.vertices[inside[1]].pos, intersections[1], intersections[0], color);
                }
            }
            else
            {
                if (inside[0] == 1)
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[1], intersections[0], color);
                }
                else
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[0], intersections[1], color);
                }
            }
            if (addEdges)
            {
                if (nInside == 2)
                {
                    mesh.AddEdge(triangle.vertices[inside[0]].pos, triangle.vertices[inside[1]].pos, triangle.edges[0].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    mesh.AddEdge(triangle.vertices[inside[0]].pos, intersections[0], triangle.edges[1].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    mesh.AddEdge(triangle.vertices[inside[1]].pos, intersections[1], triangle.edges[2].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                }
                else
                {
                    for (int iInter = 0; iInter < nIntersections; iInter++)
                    {
                        mesh.AddEdge(triangle.vertices[inside[0]].pos, intersections[iInter], triangle.edges[(inside[0] + 2 * iInter) % 3].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    }
                }
            }
            if (nIntersections == 2)
            {
                mesh.AddEdge(intersections[0], intersections[1], Submesh.MESHCOLOR_CUT_EDGE);
            }
        }
Beispiel #28
0
 public void disconnectFace(TopoTriangle triangle)
 {
     connectedFacesList.Remove(triangle);
 }
Beispiel #29
0
 public TopoTriangleDistance(double dist, TopoTriangle tri)
 {
     triangle = tri;
     distance = dist;
 }