NextDouble() public method

Generates a random double. Values returned are over the range [0, 1). That is, inclusive of 0.0 and exclusive of 1.0.
public NextDouble ( ) : double
return double
        /// <summary>
        /// Sample from the provided discrete probability distribution.
        /// </summary>
        /// <param name="dist">The discrete distribution to sample from.</param>
        /// <param name="rng">Random number generator.</param>
        public static int Sample(DiscreteDistribution dist, XorShiftRandom rng)
        {
            // Throw the ball and return an integer indicating the outcome.
            double sample = rng.NextDouble();
            double acc = 0.0;
            for(int i=0; i<dist.Probabilities.Length; i++)
            {
                acc += dist.Probabilities[i];
                if(sample < acc) {
                    return dist.Labels[i];
                }
            }

            // We might get here through floating point arithmetic rounding issues.
            // e.g. accumulator == throwValue.

            // Find a nearby non-zero probability to select.
            // Wrap around to start of array.
            for(int i=0; i<dist.Probabilities.Length; i++)
            {
                if(0.0 != dist.Probabilities[i]) {
                    return dist.Labels[i];
                }
            }

            // If we get here then we have an array of zero probabilities.
            throw new InvalidOperationException("Invalid operation. No non-zero probabilities to select.");
        }
Beispiel #2
0
        public void NextDouble()
        {
            int sampleCount = 10000000;
            XorShiftRandom rng = new XorShiftRandom();
            double[] sampleArr = new double[sampleCount];

            for(int i=0; i<sampleCount; i++){
                sampleArr[i] = rng.NextDouble();
            }

            UniformDistributionTest(sampleArr, 0.0, 1.0);
        }
Beispiel #3
0
 /// <summary>
 /// For activation functions that accept auxiliary arguments; generates random initial values for aux arguments for newly
 /// added nodes (from an 'add neuron' mutation).
 /// </summary>
 public double[] GetRandomAuxArgs(XorShiftRandom rng, double connectionWeightRange)
 {
     double[] auxArgs = new double[2];
     auxArgs[0] = (rng.NextDouble()-0.5) * 2.0;
     auxArgs[1] = rng.NextDouble();
     return auxArgs;
 }
 /// <summary>
 /// Sample from a set of possible outcomes with equal probability, i.e. a uniform discrete distribution.
 /// </summary>
 /// <param name="numberOfOutcomes">The number of possible outcomes.</param>
 /// <param name="rng">Random number generator.</param>
 /// <returns>An integer between 0..numberOfOutcomes-1.</returns>
 public static int SampleUniformDistribution(int numberOfOutcomes, XorShiftRandom rng)
 {
     return (int)(rng.NextDouble() * numberOfOutcomes);
 }
 /// <summary>
 /// Sample from a binary distribution with the specified probability split between state false and true.
 /// </summary>
 /// <param name="probability">A probability between 0..1 that describes the probbaility of sampling boolean true.</param>
 /// <param name="rng">Random number generator.</param>
 public static bool SampleBinaryDistribution(double probability, XorShiftRandom rng)
 {
     return rng.NextDouble() < probability;
 }
Beispiel #6
0
 /// <summary>
 /// Rounds up or down to a whole number by using the fractional part of the input value
 /// as the probability that the value will be rounded up.
 /// 
 /// This is useful if we wish to round values and then sum them without generating a rounding bias.
 /// For monetary rounding this problem is solved with rounding to e.g. the nearest even number which
 /// then causes a bias towards even numbers.
 /// 
 /// This solution is more appropriate for certain types of scientific values.
 /// </summary>
 public static double ProbabilisticRound(double val, XorShiftRandom rng)
 {
     double integerPart = Math.Floor(val);
     double fractionalPart = val - integerPart;
     return rng.NextDouble() < fractionalPart ? integerPart + 1.0 : integerPart;
 }