size() public method

public size ( ) : int
return int
Beispiel #1
0
        public Path(TimeGrid timeGrid, Vector values) {
            timeGrid_ = timeGrid;
            values_ = (Vector)values.Clone();
            if (values_.empty())
                values_ = new Vector(timeGrid_.size());

            if (values_.size() != timeGrid_.size())
                throw new ApplicationException("different number of times and asset values");
        }
        public Path(TimeGrid timeGrid, Vector values)
        {
            timeGrid_ = timeGrid;
            values_   = (Vector)values.Clone();
            if (values_.empty())
            {
                values_ = new Vector(timeGrid_.size());
            }

            if (values_.size() != timeGrid_.size())
            {
                throw new ApplicationException("different number of times and asset values");
            }
        }
Beispiel #3
0
        public MultiPathGenerator(StochasticProcess process, TimeGrid times, GSG generator, bool brownianBridge)
        {
            brownianBridge_ = brownianBridge;
            process_        = process;
            generator_      = generator;
            next_           = new Sample <IPath>(new MultiPath(process.size(), times), 1.0);

            Utils.QL_REQUIRE(generator_.dimension() == process.factors() * (times.size() - 1), () =>
                             "dimension (" + generator_.dimension()
                             + ") is not equal to ("
                             + process.factors() + " * " + (times.size() - 1)
                             + ") the number of factors "
                             + "times the number of time steps");
            Utils.QL_REQUIRE(times.size() > 1, () => "no times given");
        }
        public LongstaffSchwartzPathPricer(TimeGrid times, IEarlyExercisePathPricer <PathType, double> pathPricer,
                                           YieldTermStructure termStructure)
        {
            calibrationPhase_ = true;
            pathPricer_       = pathPricer;
            coeff_            = new InitializedList <Vector>(times.size() - 1);
            dF_ = new InitializedList <double>(times.size() - 1);
            v_  = pathPricer_.basisSystem();

            for (int i = 0; i < times.size() - 1; ++i)
            {
                dF_[i] = termStructure.discount(times[i + 1])
                         / termStructure.discount(times[i]);
            }
        }
Beispiel #5
0
 public override Lattice tree(TimeGrid grid) {
     TermStructureFittingParameter phi = new TermStructureFittingParameter(termStructure());
     ShortRateDynamics numericDynamics = new Dynamics(phi, a(), sigma());
     TrinomialTree trinomial = new TrinomialTree(numericDynamics.process(), grid);
     ShortRateTree numericTree = new ShortRateTree(trinomial, numericDynamics, grid);
     TermStructureFittingParameter.NumericalImpl  impl =
         (TermStructureFittingParameter.NumericalImpl)phi.implementation();
     impl.reset();
     for (int i=0; i<(grid.size() - 1); i++) {
         double discountBond = termStructure().link.discount(grid[i+1]);
         Vector  statePrices = numericTree.statePrices(i);
         int size = numericTree.size(i);
         double dt = numericTree.timeGrid().dt(i);
         double dx = trinomial.dx(i);
         double x = trinomial.underlying(i,0);
         double value = 0.0;
         for (int j=0; j<size; j++) {
             value += statePrices[j]*Math.Exp(-x*dt);
             x += dx;
         }
         value = Math.Log(value/discountBond)/dt;
         impl.setvalue(grid[i], value);
     }
     return numericTree;
 }
Beispiel #6
0
        protected override IPathGenerator <IRNG> pathGenerator()
        {
            TimeGrid grid = timeGrid();
            IRNG     gen  = new RNG().make_sequence_generator(grid.size() - 1, seed_);

            return(new PathGenerator <IRNG>(process_, grid, gen, brownianBridge_));
        }
Beispiel #7
0
        public override Lattice tree(TimeGrid grid)
        {
            TermStructureFittingParameter phi = new TermStructureFittingParameter(termStructure());

            ShortRateDynamics numericDynamics =
                new Dynamics(phi, a(), sigma());

            TrinomialTree trinomial =
                new TrinomialTree(numericDynamics.process(), grid);
            ShortRateTree numericTree =
                new ShortRateTree(trinomial, numericDynamics, grid);

            TermStructureFittingParameter.NumericalImpl impl =
                (TermStructureFittingParameter.NumericalImpl)phi.implementation();
            impl.reset();
            double value = 1.0;
            double vMin  = -50.0;
            double vMax  = 50.0;

            for (int i = 0; i < (grid.size() - 1); i++)
            {
                double discountBond = termStructure().link.discount(grid[i + 1]);
                double xMin         = trinomial.underlying(i, 0);
                double dx           = trinomial.dx(i);
                Helper finder       = new Helper(i, xMin, dx, discountBond, numericTree);
                Brent  s1d          = new Brent();
                s1d.setMaxEvaluations(1000);
                value = s1d.solve(finder, 1e-7, value, vMin, vMax);
                impl.setvalue(grid[i], value);
            }
            return(numericTree);
        }
Beispiel #8
0
        public override Lattice tree( TimeGrid grid)  
        {
            TermStructureFittingParameter phi= new TermStructureFittingParameter(termStructure());

            ShortRateDynamics numericDynamics=
                                    new Dynamics(phi, a(), sigma());

            TrinomialTree trinomial=
                             new TrinomialTree(numericDynamics.process(), grid);
            ShortRateTree numericTree =
                             new ShortRateTree(trinomial, numericDynamics, grid);

            TermStructureFittingParameter.NumericalImpl impl = 
                (TermStructureFittingParameter.NumericalImpl)phi.implementation();
            impl.reset();
            double value = 1.0;
            double vMin = -50.0;
            double vMax = 50.0;
            for (int i=0; i<(grid.size() - 1); i++) {
                double discountBond = termStructure().link.discount(grid[i+1]);
                double xMin = trinomial.underlying(i, 0);
                double dx = trinomial.dx(i);
                Helper finder = new Helper(i, xMin, dx, discountBond, numericTree);
                Brent s1d = new Brent();
                s1d.setMaxEvaluations(1000);
                value = s1d.solve(finder, 1e-7, value, vMin, vMax);
                impl.setvalue(grid[i], value);
                // vMin = value - 10.0;
                // vMax = value + 10.0;
            }
            return numericTree;
        }
Beispiel #9
0
        public override Lattice tree(TimeGrid grid)
        {
            TermStructureFittingParameter phi             = new TermStructureFittingParameter(termStructure());
            ShortRateDynamics             numericDynamics = new Dynamics(phi, a(), sigma());
            TrinomialTree trinomial   = new TrinomialTree(numericDynamics.process(), grid);
            ShortRateTree numericTree = new ShortRateTree(trinomial, numericDynamics, grid);

            TermStructureFittingParameter.NumericalImpl impl =
                (TermStructureFittingParameter.NumericalImpl)phi.implementation();
            impl.reset();
            for (int i = 0; i < (grid.size() - 1); i++)
            {
                double discountBond = termStructure().link.discount(grid[i + 1]);
                Vector statePrices  = numericTree.statePrices(i);
                int    size         = numericTree.size(i);
                double dt           = numericTree.timeGrid().dt(i);
                double dx           = trinomial.dx(i);
                double x            = trinomial.underlying(i, 0);
                double value        = 0.0;
                for (int j = 0; j < size; j++)
                {
                    value += statePrices[j] * Math.Exp(-x * dt);
                    x     += dx;
                }
                value = Math.Log(value / discountBond) / dt;
                impl.setvalue(grid[i], value);
            }
            return(numericTree);
        }
            //! Tree build-up + numerical fitting to term-structure
            public ShortRateTree(TrinomialTree tree,
                                 ShortRateDynamics dynamics,
                                 TermStructureFittingParameter.NumericalImpl theta,
                                 TimeGrid timeGrid)
                : base(timeGrid, tree.size(1))
            {
                tree_     = tree;
                dynamics_ = dynamics;
                theta.reset();
                double value = 1.0;
                double vMin  = -100.0;
                double vMax  = 100.0;

                for (int i = 0; i < (timeGrid.size() - 1); i++)
                {
                    double discountBond = theta.termStructure().link.discount(t_[i + 1]);
                    Helper finder       = new Helper(i, discountBond, theta, this);
                    Brent  s1d          = new Brent();
                    s1d.setMaxEvaluations(1000);
                    value = s1d.solve(finder, 1e-7, value, vMin, vMax);
                    // vMin = value - 1.0;
                    // vMax = value + 1.0;
                    theta.change(value);
                }
            }
Beispiel #11
0
        public PathGenerator(StochasticProcess process, TimeGrid timeGrid, GSG generator, bool brownianBridge)
        {
            brownianBridge_ = brownianBridge;
            generator_      = generator;
            dimension_      = generator_.dimension();
            timeGrid_       = timeGrid;
            process_        = process as StochasticProcess1D;
            next_           = new Sample <IPath>(new Path(timeGrid_), 1.0);
            temp_           = new InitializedList <double>(dimension_);
            bb_             = new BrownianBridge(timeGrid_);

            if (dimension_ != timeGrid_.size() - 1)
            {
                throw new Exception("sequence generator dimensionality (" + dimension_
                                    + ") != timeSteps (" + (timeGrid_.size() - 1) + ")");
            }
        }
 public LatticeShortRateModelEngine(ShortRateModel model,
                                    TimeGrid timeGrid)
     : base(model)
 {
     timeGrid_  = new TimeGrid(timeGrid.Last(), timeGrid.size() - 1 /*timeGrid.dt(1) - timeGrid.dt(0)*/);
     timeGrid_  = timeGrid;
     timeSteps_ = 0;
     lattice_   = this.model_.link.tree(timeGrid);
 }
Beispiel #13
0
        public MultiPathGenerator(StochasticProcess process, TimeGrid times, GSG generator, bool brownianBridge)
        {
            brownianBridge_ = brownianBridge;
            process_        = process;
            generator_      = generator;
            next_           = new Sample <IPath>(new MultiPath(process.size(), times), 1.0);

            if (generator_.dimension() != process.factors() * (times.size() - 1))
            {
                throw new Exception("dimension (" + generator_.dimension()
                                    + ") is not equal to ("
                                    + process.factors() + " * " + (times.size() - 1)
                                    + ") the number of factors "
                                    + "times the number of time steps");
            }
            if (!(times.size() > 1))
            {
                throw new Exception("no times given");
            }
        }
Beispiel #14
0
        protected override PathPricer <IPath> pathPricer()
        {
            PlainVanillaPayoff payoff = arguments_.payoff as PlainVanillaPayoff;

            Utils.QL_REQUIRE(payoff != null, () => "non-plain payoff given");

            TimeGrid      grid      = timeGrid();
            List <double> discounts = new InitializedList <double>(grid.size());

            for (int i = 0; i < grid.size(); i++)
            {
                discounts[i] = process_.riskFreeRate().currentLink().discount(grid[i]);
            }

            // do this with template parameters?
            if (isBiased_)
            {
                return(new BiasedBarrierPathPricer(arguments_.barrierType,
                                                   arguments_.barrier,
                                                   arguments_.rebate,
                                                   payoff.optionType(),
                                                   payoff.strike(),
                                                   discounts));
            }
            else
            {
                IRNG sequenceGen = new RandomSequenceGenerator <MersenneTwisterUniformRng>(grid.size() - 1, 5);
                return(new BarrierPathPricer(arguments_.barrierType,
                                             arguments_.barrier,
                                             arguments_.rebate,
                                             payoff.optionType(),
                                             payoff.strike(),
                                             discounts,
                                             process_,
                                             sequenceGen));
            }
        }
        private void pathGenerator(UnderlyingInfo under)
        {
            ulong seed = 1;
            int timeSteps = 365;
            //
            int dimensions = this.processArr_.factors();

            double t = processArr_.time(maturity);

            TimeGrid grid = new TimeGrid(t, timeSteps);

            IRNG rndGenerator = (IRNG)new PseudoRandom().make_sequence_generator(dimensions * (grid.size() - 1), seed);

            this.pathGenerator_ = new MultiPathGenerator<IRNG>(this.processArr_, grid, rndGenerator, false);

        }
Beispiel #16
0
 //! generic times
 public BrownianBridge(TimeGrid timeGrid)
 {
     size_        = timeGrid.size() - 1;
     t_           = new InitializedList <double>(size_);
     sqrtdt_      = new InitializedList <double>(size_);
     sqrtdt_      = new InitializedList <double>(size_);
     bridgeIndex_ = new InitializedList <int>(size_);
     leftIndex_   = new InitializedList <int>(size_);
     rightIndex_  = new InitializedList <int>(size_);
     leftWeight_  = new InitializedList <double>(size_);
     rightWeight_ = new InitializedList <double>(size_);
     stdDev_      = new InitializedList <double>(size_);
     for (int i = 0; i < size_; ++i)
     {
         t_[i] = timeGrid[i + 1];
     }
     initialize();
 }
        public void testLambdaBootstrapping()
        {
            //"Testing caplet LMM lambda bootstrapping..."

            //SavedSettings backup;

            double tolerance = 1e-10;
            double[] lambdaExpected = {14.3010297550, 19.3821411939, 15.9816590141,
                                          15.9953118303, 14.0570815635, 13.5687599894,
                                          12.7477197786, 13.7056638165, 11.6191989567};

            LiborForwardModelProcess process = makeProcess();
            Matrix covar = process.covariance(0.0, null, 1.0);

            for (int i=0; i<9; ++i) {
                double calculated = Math.Sqrt(covar[i+1,i+1]);
                double expected   = lambdaExpected[i]/100;

                if (Math.Abs(calculated - expected) > tolerance)
                    Assert.Fail("Failed to reproduce expected lambda values"
                                + "\n    calculated: " + calculated
                                + "\n    expected:   " + expected);
            }

            LfmCovarianceParameterization param =  process.covarParam();

            List<double> tmp = process.fixingTimes();
            TimeGrid grid= new TimeGrid(tmp.Last(), 14);

            for (int t=0; t<grid.size(); ++t) {
                //verifier la presence du null
                Matrix diff = param.integratedCovariance(grid[t],null)
                            - param.integratedCovariance(grid[t], null);

                for (int i=0; i<diff.rows(); ++i)
                {
                    for (int j=0; j<diff.columns(); ++j)
                    {
                        if (Math.Abs(diff[i,j]) > tolerance)
                        {
                             Assert.Fail("Failed to reproduce integrated covariance"
                                          + "\n    calculated: " + diff[i,j]
                                          + "\n    expected:   " + 0);
                        }
                    }
                }
            }
        }
        public void testMonteCarloCapletPricing()
        {
            //"Testing caplet LMM Monte-Carlo caplet pricing..."

            //SavedSettings backup;

            /* factor loadings are taken from Hull & White article
               plus extra normalisation to get orthogonal eigenvectors
               http://www.rotman.utoronto.ca/~amackay/fin/libormktmodel2.pdf */
            double[] compValues = {0.85549771, 0.46707264, 0.22353259,
                                 0.91915359, 0.37716089, 0.11360610,
                                 0.96438280, 0.26413316,-0.01412414,
                                 0.97939148, 0.13492952,-0.15028753,
                                 0.95970595,-0.00000000,-0.28100621,
                                 0.97939148,-0.13492952,-0.15028753,
                                 0.96438280,-0.26413316,-0.01412414,
                                 0.91915359,-0.37716089, 0.11360610,
                                 0.85549771,-0.46707264, 0.22353259};

            Matrix volaComp=new Matrix(9,3);
            List<double> lcompValues=new InitializedList<double>(27,0);
            List<double> ltemp = new InitializedList<double>(3, 0);
            lcompValues=compValues.ToList();
            //std::copy(compValues, compValues+9*3, volaComp.begin());
            for (int i = 0; i < 9; i++)
            {
                ltemp = lcompValues.GetRange(3*i, 3);
                for (int j = 0; j < 3; j++)
                    volaComp[i, j] = ltemp[j];
            }
            LiborForwardModelProcess process1 = makeProcess();
            LiborForwardModelProcess process2 = makeProcess(volaComp);

            List<double> tmp = process1.fixingTimes();
            TimeGrid grid=new TimeGrid(tmp ,12);

            List<int> location=new List<int>();
            for (int i=0; i < tmp.Count; ++i) {
                location.Add(grid.index(tmp[i])) ;
            }

            // set-up a small Monte-Carlo simulation to price caplets
            // and ratchet caps using a one- and a three factor libor market model

             ulong seed = 42;
             LowDiscrepancy.icInstance = new InverseCumulativeNormal();
             IRNG rsg1 = (IRNG)new LowDiscrepancy().make_sequence_generator(
                                                            process1.factors()*(grid.size()-1), seed);
             IRNG rsg2 = (IRNG)new LowDiscrepancy().make_sequence_generator(
                                                            process2.factors()*(grid.size()-1), seed);

            MultiPathGenerator<IRNG> generator1=new MultiPathGenerator<IRNG> (process1, grid, rsg1, false);
            MultiPathGenerator<IRNG> generator2=new MultiPathGenerator<IRNG> (process2, grid, rsg2, false);

            const int nrTrails = 250000;
            List<GeneralStatistics> stat1 = new InitializedList<GeneralStatistics>(process1.size());
            List<GeneralStatistics> stat2 = new InitializedList<GeneralStatistics>(process2.size());
            List<GeneralStatistics> stat3 = new InitializedList<GeneralStatistics>(process2.size() - 1);
            for (int i=0; i<nrTrails; ++i) {
                Sample<MultiPath> path1 = generator1.next();
                Sample<MultiPath> path2 = generator2.next();

                List<double> rates1=new InitializedList<double>(len);
                List<double> rates2 = new InitializedList<double>(len);
                for (int j=0; j<process1.size(); ++j) {
                    rates1[j] = path1.value[j][location[j]];
                    rates2[j] = path2.value[j][location[j]];
                }

                List<double> dis1 = process1.discountBond(rates1);
                List<double> dis2 = process2.discountBond(rates2);

                for (int k=0; k<process1.size(); ++k) {
                    double accrualPeriod =  process1.accrualEndTimes()[k]
                                        - process1.accrualStartTimes()[k];
                    // caplet payoff function, cap rate at 4%
                    double payoff1 = Math.Max(rates1[k] - 0.04, 0.0) * accrualPeriod;

                    double payoff2 = Math.Max(rates2[k] - 0.04, 0.0) * accrualPeriod;
                    stat1[k].add(dis1[k] * payoff1);
                    stat2[k].add(dis2[k] * payoff2);

                    if (k != 0) {
                        // ratchet cap payoff function
                        double payoff3 =  Math.Max(rates2[k] - (rates2[k-1]+0.0025), 0.0)
                                      * accrualPeriod;
                        stat3[k-1].add(dis2[k] * payoff3);
                    }
                }

            }

            double[] capletNpv = {0.000000000000, 0.000002841629, 0.002533279333,
                                0.009577143571, 0.017746502618, 0.025216116835,
                                0.031608230268, 0.036645683881, 0.039792254012,
                                0.041829864365};

            double[] ratchetNpv = {0.0082644895, 0.0082754754, 0.0082159966,
                                 0.0082982822, 0.0083803357, 0.0084366961,
                                 0.0084173270, 0.0081803406, 0.0079533814};

            for (int k=0; k < process1.size(); ++k) {

                double calculated1 = stat1[k].mean();
                double tolerance1  = stat1[k].errorEstimate();
                double expected    = capletNpv[k];

                if (Math.Abs(calculated1 - expected) > tolerance1) {
                    Assert.Fail("Failed to reproduce expected caplet NPV"
                                + "\n    calculated: " + calculated1
                                + "\n    error int:  " + tolerance1
                                + "\n    expected:   " + expected);
                }

                double calculated2 = stat2[k].mean();
                double tolerance2  = stat2[k].errorEstimate();

                if (Math.Abs(calculated2 - expected) > tolerance2) {
                    Assert.Fail("Failed to reproduce expected caplet NPV"
                                + "\n    calculated: " + calculated2
                                + "\n    error int:  " + tolerance2
                                + "\n    expected:   " + expected);
                }

                if (k != 0) {
                    double calculated3 = stat3[k-1].mean();
                    double tolerance3  = stat3[k-1].errorEstimate();
                    expected    = ratchetNpv[k-1];

                    double refError = 1e-5; // 1e-5. error bars of the reference values

                    if (Math.Abs(calculated3 - expected) > tolerance3 + refError) {
                        Assert.Fail("Failed to reproduce expected caplet NPV"
                                    + "\n    calculated: " + calculated3
                                    + "\n    error int:  " + tolerance3 + refError
                                    + "\n    expected:   " + expected);
                    }
                }
            }
        }
Beispiel #19
0
 public int length()
 {
     return(timeGrid_.size());
 }
Beispiel #20
0
        protected override IPathGenerator <IRNG> controlPathGenerator()
        {
            int      dimensions = process_.factors();
            TimeGrid grid       = this.timeGrid();
            IRNG     generator  = (IRNG) new  RNG().make_sequence_generator(dimensions * (grid.size() - 1), this.seed_);
            HybridHestonHullWhiteProcess process = process_ as HybridHestonHullWhiteProcess;

            Utils.QL_REQUIRE(process != null, () => "invalid process");
            HybridHestonHullWhiteProcess cvProcess = new HybridHestonHullWhiteProcess(process.hestonProcess(),
                                                                                      process.hullWhiteProcess(), 0.0, process.discretization());

            return(new MultiPathGenerator <IRNG>(cvProcess, grid, generator, false));
        }
Beispiel #21
0
 //! generic times
 public BrownianBridge(TimeGrid timeGrid) {
     size_ = timeGrid.size()-1;
     t_ = new InitializedList<double>(size_);
     sqrtdt_ = new InitializedList<double>(size_);
     sqrtdt_ = new InitializedList<double>(size_);
     bridgeIndex_ = new InitializedList<int>(size_);
     leftIndex_ = new InitializedList<int>(size_);
     rightIndex_ = new InitializedList<int>(size_);
     leftWeight_ = new InitializedList<double>(size_);
     rightWeight_ = new InitializedList<double>(size_);
     stdDev_ = new InitializedList<double>(size_);
     for (int i=0; i<size_; ++i)
         t_[i] = timeGrid[i+1];
     initialize();
 }
Beispiel #22
0
        public void testSwaptionPricing()
        {
            //"Testing forward swap and swaption pricing...");

            //SavedSettings backup;

            const int size  = 10;
            const int steps = 8*size;
            #if QL_USE_INDEXED_COUPON
            const double tolerance = 1e-6;
            #else
            const double tolerance = 1e-12;
            #endif

            List<Date> dates = new List<Date>();
            List<double> rates = new List<double>();
            dates.Add(new Date(4,9,2005));
            dates.Add(new Date(4,9,2011));
            rates.Add(0.04);
            rates.Add(0.08);

            IborIndex index = makeIndex(dates, rates);

            LiborForwardModelProcess process = new LiborForwardModelProcess(size, index);

            LmCorrelationModel corrModel = new LmExponentialCorrelationModel(size, 0.5);

            LmVolatilityModel volaModel = new LmLinearExponentialVolatilityModel(process.fixingTimes(),
                                                                                0.291, 1.483, 0.116, 0.00001);

               // set-up pricing engine
            process.setCovarParam((LfmCovarianceParameterization)
                                       new LfmCovarianceProxy(volaModel, corrModel));

            // set-up a small Monte-Carlo simulation to price swations
            List<double> tmp = process.fixingTimes();

            TimeGrid grid=new TimeGrid(tmp ,steps);

            List<int> location=new List<int>();
            for (int i=0; i < tmp.Count; ++i) {
                location.Add(grid.index(tmp[i])) ;
            }

            ulong seed=42;
            const int nrTrails = 5000;
            LowDiscrepancy.icInstance = new InverseCumulativeNormal();

            IRNG rsg = (InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>
                                                                    ,InverseCumulativeNormal>)
            new PseudoRandom().make_sequence_generator(process.factors()*(grid.size()-1),seed);

            MultiPathGenerator<IRNG> generator=new MultiPathGenerator<IRNG>(process,
                                                                            grid,
                                                                            rsg, false);

            LiborForwardModel liborModel = new LiborForwardModel(process, volaModel, corrModel);

            Calendar calendar = index.fixingCalendar();
            DayCounter dayCounter = index.forwardingTermStructure().link.dayCounter();
            BusinessDayConvention convention = index.businessDayConvention();

            Date settlement = index.forwardingTermStructure().link.referenceDate();

            SwaptionVolatilityMatrix m = liborModel.getSwaptionVolatilityMatrix();

            for (int i=1; i < size; ++i) {
                for (int j=1; j <= size-i; ++j) {
                    Date fwdStart    = settlement + new Period(6*i, TimeUnit.Months);
                    Date fwdMaturity = fwdStart + new Period(6*j, TimeUnit.Months);

                    Schedule schedule =new Schedule(fwdStart, fwdMaturity, index.tenor(), calendar,
                                       convention, convention, DateGeneration.Rule.Forward, false);

                    double swapRate  = 0.0404;
                    VanillaSwap forwardSwap = new VanillaSwap(VanillaSwap.Type.Receiver, 1.0,
                                                                schedule, swapRate, dayCounter,
                                                                schedule, index, 0.0, index.dayCounter());
                    forwardSwap.setPricingEngine(new DiscountingSwapEngine(index.forwardingTermStructure()));

                    // check forward pricing first
                    double expected = forwardSwap.fairRate();
                    double calculated = liborModel.S_0(i-1,i+j-1);

                    if (Math.Abs(expected - calculated) > tolerance)
                        Assert.Fail("Failed to reproduce fair forward swap rate"
                                    + "\n    calculated: " + calculated
                                    + "\n    expected:   " + expected);

                    swapRate = forwardSwap.fairRate();
                    forwardSwap =
                        new VanillaSwap(VanillaSwap.Type.Receiver, 1.0,
                                        schedule, swapRate, dayCounter,
                                        schedule, index, 0.0, index.dayCounter());
                    forwardSwap.setPricingEngine(new DiscountingSwapEngine(index.forwardingTermStructure()));

                    if (i == j && i<=size/2) {
                        IPricingEngine engine =
                            new LfmSwaptionEngine(liborModel, index.forwardingTermStructure());
                        Exercise exercise =
                            new EuropeanExercise(process.fixingDates()[i]);

                        Swaption swaption =
                            new Swaption(forwardSwap, exercise);
                        swaption.setPricingEngine(engine);

                        GeneralStatistics stat = new GeneralStatistics();

                        for (int n=0; n<nrTrails; ++n) {
                            Sample<MultiPath> path = (n%2!=0) ? generator.antithetic()
                                                     : generator.next();

                            //Sample<MultiPath> path = generator.next();
                            List<double> rates_ = new InitializedList<double>(size);
                            for (int k=0; k<process.size(); ++k) {
                                rates_[k] = path.value[k][location[i]];
                            }
                            List<double> dis = process.discountBond(rates_);

                            double npv=0.0;
                            for (int k=i; k < i+j; ++k) {
                                npv += (swapRate - rates_[k])
                                       * (  process.accrualEndTimes()[k]
                                          - process.accrualStartTimes()[k])*dis[k];
                            }
                            stat.add(Math.Max(npv, 0.0));
                        }

                        if (Math.Abs(swaption.NPV() - stat.mean())
                            > stat.errorEstimate()*2.35)
                            Assert.Fail("Failed to reproduce swaption npv"
                                        + "\n    calculated: " + stat.mean()
                                        + "\n    expected:   " + swaption.NPV());
                    }
                }
            }
        }
Beispiel #23
0
        public override void calculate()
        {
            // this is an european option pricer
            Utils.QL_REQUIRE(arguments_.exercise.type() == Exercise.Type.European, () => "not an European option");

            // plain vanilla
            PlainVanillaPayoff payoff = arguments_.payoff as PlainVanillaPayoff;

            Utils.QL_REQUIRE(payoff != null, () => "non-striked payoff given");

            double v0        = model_.link.v0();
            double spotPrice = model_.link.s0();

            Utils.QL_REQUIRE(spotPrice > 0.0, () => "negative or null underlying given");

            double strike = payoff.strike();
            double term   = model_.link.riskFreeRate().link.dayCounter().yearFraction(
                model_.link.riskFreeRate().link.referenceDate(), arguments_.exercise.lastDate());
            double riskFreeDiscount = model_.link.riskFreeRate().link.discount(arguments_.exercise.lastDate());
            double dividendDiscount = model_.link.dividendYield().link.discount(arguments_.exercise.lastDate());

            //average values
            TimeGrid timeGrid = model_.link.timeGrid();
            int      n = timeGrid.size() - 1;
            double   kappaAvg = 0.0, thetaAvg = 0.0, sigmaAvg = 0.0, rhoAvg = 0.0;

            for (int i = 1; i <= n; ++i)
            {
                double t = 0.5 * (timeGrid[i - 1] + timeGrid[i]);
                kappaAvg += model_.link.kappa(t);
                thetaAvg += model_.link.theta(t);
                sigmaAvg += model_.link.sigma(t);
                rhoAvg   += model_.link.rho(t);
            }
            kappaAvg /= n;
            thetaAvg /= n;
            sigmaAvg /= n;
            rhoAvg   /= n;

            double c_inf = Math.Min(10.0, Math.Max(0.0001,
                                                   Math.Sqrt(1.0 - Math.Pow(rhoAvg, 2)) / sigmaAvg)) * (v0 + kappaAvg * thetaAvg * term);

            double p1 = integration_.calculate(c_inf,
                                               new Fj_Helper(model_, term, strike, 1).value) / Const.M_PI;

            double p2 = integration_.calculate(c_inf,
                                               new Fj_Helper(model_, term, strike, 2).value) / Const.M_PI;

            switch (payoff.optionType())
            {
            case Option.Type.Call:
                results_.value = spotPrice * dividendDiscount * (p1 + 0.5)
                                 - strike * riskFreeDiscount * (p2 + 0.5);
                break;

            case Option.Type.Put:
                results_.value = spotPrice * dividendDiscount * (p1 - 0.5)
                                 - strike * riskFreeDiscount * (p2 - 0.5);
                break;

            default:
                Utils.QL_FAIL("unknown option type");
                break;
            }
        }