Beispiel #1
0
        // Optimization function for hypersphere and lower-diagonal algorithm
        private static Matrix hypersphereOptimize(Matrix targetMatrix, Matrix currentRoot, bool lowerDiagonal)
        {
            int    i, j, k, size = targetMatrix.rows();
            Matrix result   = new Matrix(currentRoot);
            Vector variance = new Vector(size);

            for (i = 0; i < size; i++)
            {
                variance[i] = Math.Sqrt(targetMatrix[i, i]);
            }
            if (lowerDiagonal)
            {
                Matrix approxMatrix = result * Matrix.transpose(result);
                result = MatrixUtilities.CholeskyDecomposition(approxMatrix, true);
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size; j++)
                    {
                        result[i, j] /= Math.Sqrt(approxMatrix[i, i]);
                    }
                }
            }
            else
            {
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size; j++)
                    {
                        result[i, j] /= variance[i];
                    }
                }
            }

            ConjugateGradient       optimize     = new ConjugateGradient();
            EndCriteria             endCriteria  = new EndCriteria(100, 10, 1e-8, 1e-8, 1e-8);
            HypersphereCostFunction costFunction = new HypersphereCostFunction(targetMatrix, variance, lowerDiagonal);
            NoConstraint            constraint   = new NoConstraint();

            // hypersphere vector optimization

            if (lowerDiagonal)
            {
                Vector       theta = new Vector(size * (size - 1) / 2);
                const double eps   = 1e-16;
                for (i = 1; i < size; i++)
                {
                    for (j = 0; j < i; j++)
                    {
                        theta[i * (i - 1) / 2 + j] = result[i, j];
                        if (theta[i * (i - 1) / 2 + j] > 1 - eps)
                        {
                            theta[i * (i - 1) / 2 + j] = 1 - eps;
                        }
                        if (theta[i * (i - 1) / 2 + j] < -1 + eps)
                        {
                            theta[i * (i - 1) / 2 + j] = -1 + eps;
                        }
                        for (k = 0; k < j; k++)
                        {
                            theta[i * (i - 1) / 2 + j] /= Math.Sin(theta[i * (i - 1) / 2 + k]);
                            if (theta[i * (i - 1) / 2 + j] > 1 - eps)
                            {
                                theta[i * (i - 1) / 2 + j] = 1 - eps;
                            }
                            if (theta[i * (i - 1) / 2 + j] < -1 + eps)
                            {
                                theta[i * (i - 1) / 2 + j] = -1 + eps;
                            }
                        }
                        theta[i * (i - 1) / 2 + j] = Math.Acos(theta[i * (i - 1) / 2 + j]);
                        if (j == i - 1)
                        {
                            if (result[i, i] < 0)
                            {
                                theta[i * (i - 1) / 2 + j] = -theta[i * (i - 1) / 2 + j];
                            }
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                result.fill(1);
                for (i = 0; i < size; i++)
                {
                    for (k = 0; k < size; k++)
                    {
                        if (k > i)
                        {
                            result[i, k] = 0;
                        }
                        else
                        {
                            for (j = 0; j <= k; j++)
                            {
                                if (j == k && k != i)
                                {
                                    result[i, k] *= Math.Cos(theta[i * (i - 1) / 2 + j]);
                                }
                                else if (j != i)
                                {
                                    result[i, k] *= Math.Sin(theta[i * (i - 1) / 2 + j]);
                                }
                            }
                        }
                    }
                }
            }
            else
            {
                Vector       theta = new Vector(size * (size - 1));
                const double eps   = 1e-16;
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size - 1; j++)
                    {
                        theta[j * size + i] = result[i, j];
                        if (theta[j * size + i] > 1 - eps)
                        {
                            theta[j * size + i] = 1 - eps;
                        }
                        if (theta[j * size + i] < -1 + eps)
                        {
                            theta[j * size + i] = -1 + eps;
                        }
                        for (k = 0; k < j; k++)
                        {
                            theta[j * size + i] /= Math.Sin(theta[k * size + i]);
                            if (theta[j * size + i] > 1 - eps)
                            {
                                theta[j * size + i] = 1 - eps;
                            }
                            if (theta[j * size + i] < -1 + eps)
                            {
                                theta[j * size + i] = -1 + eps;
                            }
                        }
                        theta[j * size + i] = Math.Acos(theta[j * size + i]);
                        if (j == size - 2)
                        {
                            if (result[i, j + 1] < 0)
                            {
                                theta[j * size + i] = -theta[j * size + i];
                            }
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                result.fill(1);
                for (i = 0; i < size; i++)
                {
                    for (k = 0; k < size; k++)
                    {
                        for (j = 0; j <= k; j++)
                        {
                            if (j == k && k != size - 1)
                            {
                                result[i, k] *= Math.Cos(theta[j * size + i]);
                            }
                            else if (j != size - 1)
                            {
                                result[i, k] *= Math.Sin(theta[j * size + i]);
                            }
                        }
                    }
                }
            }

            for (i = 0; i < size; i++)
            {
                for (j = 0; j < size; j++)
                {
                    result[i, j] *= variance[i];
                }
            }
            return(result);
        }
Beispiel #2
0
        // Optimization function for hypersphere and lower-diagonal algorithm
        private static Matrix hypersphereOptimize(Matrix targetMatrix, Matrix currentRoot, bool lowerDiagonal)
        {
            int i,j,k,size = targetMatrix.rows();
            Matrix result = new Matrix(currentRoot);
            Vector variance = new Vector(size);
            for (i=0; i<size; i++){
                variance[i]=Math.Sqrt(targetMatrix[i,i]);
            }
            if (lowerDiagonal) {
                Matrix approxMatrix = result*Matrix.transpose(result);
                result = MatrixUtilities.CholeskyDecomposition(approxMatrix, true);
                for (i=0; i<size; i++) {
                    for (j=0; j<size; j++) {
                        result[i,j]/=Math.Sqrt(approxMatrix[i,i]);
                    }
                }
            } else {
                for (i=0; i<size; i++) {
                    for (j=0; j<size; j++) {
                        result[i,j]/=variance[i];
                    }
                }
            }

            ConjugateGradient optimize = new ConjugateGradient();
            EndCriteria endCriteria = new EndCriteria(100, 10, 1e-8, 1e-8, 1e-8);
            HypersphereCostFunction costFunction = new HypersphereCostFunction(targetMatrix, variance, lowerDiagonal);
            NoConstraint constraint = new NoConstraint();

            // hypersphere vector optimization

            if (lowerDiagonal) {
                Vector theta = new Vector(size * (size-1)/2);
                const double eps=1e-16;
                for (i=1; i<size; i++) {
                    for (j=0; j<i; j++) {
                        theta[i*(i-1)/2+j]=result[i,j];
                        if (theta[i*(i-1)/2+j]>1-eps)
                            theta[i*(i-1)/2+j]=1-eps;
                        if (theta[i*(i-1)/2+j]<-1+eps)
                            theta[i*(i-1)/2+j]=-1+eps;
                        for (k=0; k<j; k++) {
                            theta[i*(i-1)/2+j] /= Math.Sin(theta[i*(i-1)/2+k]);
                            if (theta[i*(i-1)/2+j]>1-eps)
                                theta[i*(i-1)/2+j]=1-eps;
                            if (theta[i*(i-1)/2+j]<-1+eps)
                                theta[i*(i-1)/2+j]=-1+eps;
                        }
                        theta[i*(i-1)/2+j] = Math.Acos(theta[i*(i-1)/2+j]);
                        if (j==i-1) {
                            if (result[i,i]<0)
                                theta[i*(i-1)/2+j]=-theta[i*(i-1)/2+j];
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                result.fill(1);
                for (i=0; i<size; i++) {
                    for (k=0; k<size; k++) {
                        if (k>i) {
                            result[i,k]=0;
                        } else {
                            for (j=0; j<=k; j++) {
                                if (j == k && k!=i)
                                    result[i,k] *= Math.Cos(theta[i*(i-1)/2+j]);
                                else if (j!=i)
                                    result[i,k] *= Math.Sin(theta[i*(i-1)/2+j]);
                            }
                        }
                    }
                }
            } else {
                Vector theta = new Vector(size * (size-1));
                const double eps=1e-16;
                for (i=0; i<size; i++) {
                    for (j=0; j<size-1; j++) {
                        theta[j*size+i]=result[i,j];
                        if (theta[j*size+i]>1-eps)
                            theta[j*size+i]=1-eps;
                        if (theta[j*size+i]<-1+eps)
                            theta[j*size+i]=-1+eps;
                        for (k=0;k<j;k++) {
                            theta[j*size+i] /= Math.Sin(theta[k*size+i]);
                            if (theta[j*size+i]>1-eps)
                                theta[j*size+i]=1-eps;
                            if (theta[j*size+i]<-1+eps)
                                theta[j*size+i]=-1+eps;
                        }
                        theta[j*size+i] = Math.Acos(theta[j*size+i]);
                        if (j==size-2) {
                            if (result[i,j+1]<0)
                                theta[j*size+i]=-theta[j*size+i];
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta=p.currentValue();
                result.fill(1);
                for (i = 0; i < size; i++) {
                    for (k=0; k<size; k++) {
                        for (j=0; j<=k; j++) {
                            if (j == k && k!=size-1)
                                result[i,k] *= Math.Cos(theta[j*size+i]);
                            else if (j!=size-1)
                                result[i,k] *= Math.Sin(theta[j*size+i]);
                        }
                    }
                }
            }

            for (i=0; i<size; i++) {
                for (j=0; j<size; j++) {
                    result[i,j]*=variance[i];
                }
            }
            return result;
        }