public DiscretizedBarrierOption(BarrierOption.Arguments args, StochasticProcess process, TimeGrid grid = null)
        {
            arguments_ = args;
            vanilla_   = new DiscretizedVanillaOption(arguments_, process, grid);

            Utils.QL_REQUIRE(args.exercise.dates().Count > 0, () => "specify at least one stopping date");

            stoppingTimes_ = new InitializedList <double>(args.exercise.dates().Count);
            for (int i = 0; i < stoppingTimes_.Count; ++i)
            {
                stoppingTimes_[i] = process.time(args.exercise.date(i));
                if (grid != null && !grid.empty())
                {
                    // adjust to the given grid
                    stoppingTimes_[i] = grid.closestTime(stoppingTimes_[i]);
                }
            }
        }
Beispiel #2
0
        public override void calculate()
        {
            DayCounter rfdc   = process_.riskFreeRate().link.dayCounter();
            DayCounter divdc  = process_.dividendYield().link.dayCounter();
            DayCounter voldc  = process_.blackVolatility().link.dayCounter();
            Calendar   volcal = process_.blackVolatility().link.calendar();

            double s0 = process_.stateVariable().link.value();

            Utils.QL_REQUIRE(s0 > 0.0, () => "negative or null underlying given");
            double v             = process_.blackVolatility().link.blackVol(arguments_.exercise.lastDate(), s0);
            Date   maturityDate  = arguments_.exercise.lastDate();
            double r             = process_.riskFreeRate().link.zeroRate(maturityDate, rfdc, Compounding.Continuous, Frequency.NoFrequency).rate();
            double q             = process_.dividendYield().link.zeroRate(maturityDate, divdc, Compounding.Continuous, Frequency.NoFrequency).rate();
            Date   referenceDate = process_.riskFreeRate().link.referenceDate();

            // binomial trees with constant coefficient
            var flatRiskFree  = new Handle <YieldTermStructure>(new FlatForward(referenceDate, r, rfdc));
            var flatDividends = new Handle <YieldTermStructure>(new FlatForward(referenceDate, q, divdc));
            var flatVol       = new Handle <BlackVolTermStructure>(new BlackConstantVol(referenceDate, volcal, v, voldc));

            PlainVanillaPayoff payoff = arguments_.payoff as PlainVanillaPayoff;

            Utils.QL_REQUIRE(payoff != null, () => "non-plain payoff given");

            double maturity = rfdc.yearFraction(referenceDate, maturityDate);

            StochasticProcess1D bs =
                new GeneralizedBlackScholesProcess(process_.stateVariable(), flatDividends, flatRiskFree, flatVol);

            TimeGrid grid = new TimeGrid(maturity, timeSteps_);

            T tree = FastActivator <T> .Create().factory(bs, maturity, timeSteps_, payoff.strike());

            BlackScholesLattice <T> lattice = new BlackScholesLattice <T>(tree, r, maturity, timeSteps_);

            DiscretizedVanillaOption option = new DiscretizedVanillaOption(arguments_, process_, grid);

            option.initialize(lattice, maturity);

            // Partial derivatives calculated from various points in the
            // binomial tree (Odegaard)

            // Rollback to third-last step, and get underlying price (s2) &
            // option values (p2) at this point
            option.rollback(grid[2]);
            Vector va2 = new Vector(option.values());

            Utils.QL_REQUIRE(va2.size() == 3, () => "Expect 3 nodes in grid at second step");
            double p2h = va2[2];                   // high-price
            double s2  = lattice.underlying(2, 2); // high price

            // Rollback to second-last step, and get option value (p1) at
            // this point
            option.rollback(grid[1]);
            Vector va = new Vector(option.values());

            Utils.QL_REQUIRE(va.size() == 2, () => "Expect 2 nodes in grid at first step");
            double p1 = va[1];

            // Finally, rollback to t=0
            option.rollback(0.0);
            double p0 = option.presentValue();
            double s1 = lattice.underlying(1, 1);

            // Calculate partial derivatives
            double delta0 = (p1 - p0) / (s1 - s0);  // dp/ds
            double delta1 = (p2h - p1) / (s2 - s1); // dp/ds

            // Store results
            results_.value = p0;
            results_.delta = delta0;
            results_.gamma = 2.0 * (delta1 - delta0) / (s2 - s0); //d(delta)/ds
            results_.theta = Utils.blackScholesTheta(process_,
                                                     results_.value.GetValueOrDefault(),
                                                     results_.delta.GetValueOrDefault(),
                                                     results_.gamma.GetValueOrDefault());
        }