Beispiel #1
0
        // creating API to handle matrix multiplication, maybe switch over to GPU subroutines
        public static void NeuralNetowrkWithAnnMath()
        {
            //Initialize example matrices to teach neural net.
            Matrix xArray = new Matrix(
                new double[4, 3] {
                // columns then rows.... ugh stupid c#
                { 0, 0, 1 },
                { 0, 1, 1 },
                { 1, 0, 1 },
                { 1, 1, 1 }
            });

            VectorN yArray = new VectorN(new double[4] {
                0, 0, 1, 1
            });

            // fill wieghted array with random weights,
            // and teach it to conform
            // with the approximate statistics
            Random  r    = new Random(1);
            VectorN syn0 = new VectorN(new double[3] {
                2 * r.NextDouble() - 1,
                2 * r.NextDouble() - 1,
                2 * r.NextDouble() - 1
            });

            VectorN l1 = new VectorN(4);

            // Begin learning iteration loop.
            for (int i = 0; i < 100000; i++)
            {
                Matrix l0 = xArray;
                l1 = VectorN.Product(l0, syn0);
                l1 = VectorN.ApplyCustomOperation(AMath.Sigmoid, l1);

                VectorN l1_error = VectorN.Subtract(yArray, l1);
                VectorN l1_delta = new VectorN(l1.Size);

                l1_delta = VectorN.Product(l1_error,
                                           VectorN.ApplyCustomOperation(AMath.SigmoidLinear, l1));

                VectorN weights = VectorN.Product(l0.Transpose(), l1_delta);
                syn0 = VectorN.Add(syn0, weights);
            }

            Console.WriteLine("layer 1: \n" + l1);
        }
        /// <summary>
        /// Runs the Three layer test neural network.
        /// </summary>
        public static void RunNet()
        {
            //Initialize example matrices to teach neural net.
            Matrix xArray = new Matrix(
                new double[4, 3] {
                // columns then rows....
                { 0, 0, 1 },
                { 0, 1, 1 },
                { 1, 0, 1 },
                { 1, 1, 1 }
            });

            VectorN yArray = new VectorN(new double[4] {
                0, 1, 1, 0
            });

            // fill wieghted array with random weights,
            // and teach it to conform
            // with the approximate statistics
            Random r = new Random(1);

            Matrix  l0 = new Matrix(3, 4);
            Matrix  l1 = new Matrix(3, 4);
            VectorN l2 = new VectorN(4);

            Matrix  syn0 = new Matrix(3, 4);           // random array of a 3X4 matrix
            VectorN syn1 = new VectorN(4);             // random array of a 4X1 vector

            // Seeding the neurons with random weights.
            for (int j = 0; j < syn0.Columns; j++)
            {
                for (int i = 0; i < syn0.Rows; i++)
                {
                    syn0[i, j] = 2 * r.NextDouble() - 1;
                }

                syn1[j] = 2 * r.NextDouble() - 1;
            }

            // begin firing neurons.
            for (int i = 0; i < 60001; i++)
            {
                l0 = xArray;
                l1 = Matrix.ApplyCustomOperation(AMath.Sigmoid, Matrix.Dot(l0, syn0));
                l2 = VectorN.ApplyCustomOperation(AMath.Sigmoid, VectorN.Product(l1, syn1));

                VectorN l2_error = VectorN.Subtract(yArray, l2);

                // Print out the average error.
                if (i % 10000 == 0)
                {
                    Console.WriteLine("-------- test " + i + " --------");
                    Console.WriteLine("Error: " + l2_error.Mean(true));
                }

                // inner product
                VectorN l2_delta = VectorN.Product(l2_error, VectorN.ApplyCustomOperation(AMath.SigmoidLinear, l2));

                // scalar product
                double l1_error = l2_delta.Dot(syn1);

                // Apply that scalar to l1 to get l1_delta.
                Matrix l1_delta = Matrix.ApplyCustomOperation(AMath.SigmoidLinear, l1).Scalar(l1_error);

                syn1 = VectorN.Add(syn1, VectorN.Product(l1.Transpose(), l2_delta));
                Matrix weights = Matrix.Dot(l0.Transpose(), l1_delta);
                syn0.Add(weights);

                if (i % 10000 == 0)
                {
                    Console.WriteLine();
                    Console.ForegroundColor = ConsoleColor.Yellow;
                    Console.WriteLine("l1 : \n" + l1);
                    Console.ForegroundColor = ConsoleColor.Gray;
                    Console.WriteLine("l2 delta: " + l2_delta);
                    Console.WriteLine("syn1: " + syn1);
                }
            }
        }