Beispiel #1
0
        /// <summary>
        /// Computes a dense optical flow using the Gunnar Farneback's algorithm.
        /// </summary>
        /// <param name="prev">first 8-bit single-channel input image.</param>
        /// <param name="next">second input image of the same size and the same type as prev.</param>
        /// <param name="flow">computed flow image that has the same size as prev and type CV_32FC2.</param>
        /// <param name="pyrScale">parameter, specifying the image scale (&lt;1) to build pyramids for each image;
        /// pyrScale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous one.</param>
        /// <param name="levels">number of pyramid layers including the initial image;
        /// levels=1 means that no extra layers are created and only the original images are used.</param>
        /// <param name="winsize">averaging window size; larger values increase the algorithm robustness to
        /// image noise and give more chances for fast motion detection, but yield more blurred motion field.</param>
        /// <param name="iterations">number of iterations the algorithm does at each pyramid level.</param>
        /// <param name="polyN">size of the pixel neighborhood used to find polynomial expansion in each pixel;
        /// larger values mean that the image will be approximated with smoother surfaces,
        /// yielding more robust algorithm and more blurred motion field, typically poly_n =5 or 7.</param>
        /// <param name="polySigma">standard deviation of the Gaussian that is used to smooth derivatives used as
        /// a basis for the polynomial expansion; for polyN=5, you can set polySigma=1.1,
        /// for polyN=7, a good value would be polySigma=1.5.</param>
        /// <param name="flags">operation flags that can be a combination of OPTFLOW_USE_INITIAL_FLOW and/or OPTFLOW_FARNEBACK_GAUSSIAN</param>
        public static void CalcOpticalFlowFarneback(InputArray prev, InputArray next,
                                                    InputOutputArray flow, double pyrScale, int levels, int winsize,
                                                    int iterations, int polyN, double polySigma, OpticalFlowFlags flags)
        {
            if (prev == null)
            {
                throw new ArgumentNullException(nameof(prev));
            }
            if (next == null)
            {
                throw new ArgumentNullException(nameof(next));
            }
            if (flow == null)
            {
                throw new ArgumentNullException(nameof(flow));
            }
            prev.ThrowIfDisposed();
            next.ThrowIfDisposed();
            flow.ThrowIfNotReady();

            NativeMethods.HandleException(
                NativeMethods.video_calcOpticalFlowFarneback(
                    prev.CvPtr, next.CvPtr, flow.CvPtr, pyrScale, levels, winsize,
                    iterations, polyN, polySigma, (int)flags));
            GC.KeepAlive(prev);
            GC.KeepAlive(next);
            flow.Fix();
        }
Beispiel #2
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="frame0"></param>
        /// <param name="frame1"></param>
        /// <param name="flow"></param>
        public override void Calc(
            InputArray frame0, InputArray frame1, InputOutputArray flow)
        {
            if (disposed)
            {
                throw new ObjectDisposedException("DenseOpticalFlowImpl");
            }
            if (frame0 == null)
            {
                throw new ArgumentNullException("frame0");
            }
            if (frame1 == null)
            {
                throw new ArgumentNullException("frame1");
            }
            if (flow == null)
            {
                throw new ArgumentNullException("flow");
            }
            frame0.ThrowIfDisposed();
            frame1.ThrowIfDisposed();
            flow.ThrowIfNotReady();

            NativeMethods.video_DenseOpticalFlow_calc(
                ptr, frame0.CvPtr, frame1.CvPtr, flow.CvPtr);

            flow.Fix();
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="frame0"></param>
        /// <param name="frame1"></param>
        /// <param name="flow"></param>
        public override void Calc(
            InputArray frame0, InputArray frame1, InputOutputArray flow)
        {
            ThrowIfDisposed();
            if (frame0 == null)
            {
                throw new ArgumentNullException(nameof(frame0));
            }
            if (frame1 == null)
            {
                throw new ArgumentNullException(nameof(frame1));
            }
            if (flow == null)
            {
                throw new ArgumentNullException(nameof(flow));
            }
            frame0.ThrowIfDisposed();
            frame1.ThrowIfDisposed();
            flow.ThrowIfNotReady();

            NativeMethods.video_DenseOpticalFlow_calc(
                ptr, frame0.CvPtr, frame1.CvPtr, flow.CvPtr);

            flow.Fix();
        }
Beispiel #4
0
        /// <summary>
        /// computes sparse optical flow using multi-scale Lucas-Kanade algorithm
        /// </summary>
        /// <param name="prevImg"></param>
        /// <param name="nextImg"></param>
        /// <param name="prevPts"></param>
        /// <param name="nextPts"></param>
        /// <param name="status"></param>
        /// <param name="err"></param>
        /// <param name="winSize"></param>
        /// <param name="maxLevel"></param>
        /// <param name="criteria"></param>
        /// <param name="flags"></param>
        /// <param name="minEigThreshold"></param>
        public static void CalcOpticalFlowPyrLK(
            InputArray prevImg, InputArray nextImg,
            InputArray prevPts, InputOutputArray nextPts,
            OutputArray status, OutputArray err,
            Size?winSize           = null,
            int maxLevel           = 3,
            TermCriteria?criteria  = null,
            OpticalFlowFlags flags = OpticalFlowFlags.None,
            double minEigThreshold = 1e-4)
        {
            if (prevImg == null)
            {
                throw new ArgumentNullException(nameof(prevImg));
            }
            if (nextImg == null)
            {
                throw new ArgumentNullException(nameof(nextImg));
            }
            if (prevPts == null)
            {
                throw new ArgumentNullException(nameof(prevPts));
            }
            if (nextPts == null)
            {
                throw new ArgumentNullException(nameof(nextPts));
            }
            if (status == null)
            {
                throw new ArgumentNullException(nameof(status));
            }
            if (err == null)
            {
                throw new ArgumentNullException(nameof(err));
            }
            prevImg.ThrowIfDisposed();
            nextImg.ThrowIfDisposed();
            prevPts.ThrowIfDisposed();
            nextPts.ThrowIfNotReady();
            status.ThrowIfNotReady();
            err.ThrowIfNotReady();

            var winSize0  = winSize.GetValueOrDefault(new Size(21, 21));
            var criteria0 = criteria.GetValueOrDefault(
                TermCriteria.Both(30, 0.01));

            NativeMethods.HandleException(
                NativeMethods.video_calcOpticalFlowPyrLK_InputArray(
                    prevImg.CvPtr, nextImg.CvPtr, prevPts.CvPtr, nextPts.CvPtr,
                    status.CvPtr, err.CvPtr, winSize0, maxLevel,
                    criteria0, (int)flags, minEigThreshold));
            GC.KeepAlive(prevImg);
            GC.KeepAlive(nextImg);
            GC.KeepAlive(prevPts);
            nextPts.Fix();
            status.Fix();
            err.Fix();
        }
        /// <summary>
        /// Draws the line segments on a given image.
        /// </summary>
        /// <param name="image">The image, where the liens will be drawn. 
        /// Should be bigger or equal to the image, where the lines were found.</param>
        /// <param name="lines">A vector of the lines that needed to be drawn.</param>
        public virtual void DrawSegments(InputOutputArray image, InputArray lines)
        {
            if (image == null)
                throw new ArgumentNullException("image");
            if (lines == null)
                throw new ArgumentNullException("lines");
            image.ThrowIfNotReady();
            lines.ThrowIfDisposed();

            NativeMethods.imgproc_LineSegmentDetector_drawSegments(ptr, image.CvPtr, lines.CvPtr);

            image.Fix();
            GC.KeepAlive(lines);
        }
Beispiel #6
0
 /// <summary>
 /// Updates motion history image using the current silhouette
 /// </summary>
 /// <param name="silhouette">Silhouette mask that has non-zero pixels where the motion occurs.</param>
 /// <param name="mhi">Motion history image that is updated by the function (single-channel, 32-bit floating-point).</param>
 /// <param name="timestamp">Current time in milliseconds or other units.</param>
 /// <param name="duration">Maximal duration of the motion track in the same units as timestamp .</param>
 public static void UpdateMotionHistory(
     InputArray silhouette, InputOutputArray mhi,
     double timestamp, double duration)
 {
     if (silhouette == null)
         throw new ArgumentNullException("silhouette");
     if (mhi == null)
         throw new ArgumentNullException("mhi");
     silhouette.ThrowIfDisposed();
     mhi.ThrowIfNotReady();
     NativeMethods.optflow_motempl_updateMotionHistory(
         silhouette.CvPtr, mhi.CvPtr, timestamp, duration);
     mhi.Fix();
 }
Beispiel #7
0
 /// <summary>
 /// Updates motion history image using the current silhouette
 /// </summary>
 /// <param name="silhouette">Silhouette mask that has non-zero pixels where the motion occurs.</param>
 /// <param name="mhi">Motion history image that is updated by the function (single-channel, 32-bit floating-point).</param>
 /// <param name="timestamp">Current time in milliseconds or other units.</param>
 /// <param name="duration">Maximal duration of the motion track in the same units as timestamp .</param>
 public static void UpdateMotionHistory(
     InputArray silhouette, InputOutputArray mhi,
     double timestamp, double duration)
 {
     if (silhouette == null)
     {
         throw new ArgumentNullException("nameof(silhouette)");
     }
     if (mhi == null)
     {
         throw new ArgumentNullException("nameof(mhi)");
     }
     silhouette.ThrowIfDisposed();
     mhi.ThrowIfNotReady();
     NativeMethods.optflow_motempl_updateMotionHistory(
         silhouette.CvPtr, mhi.CvPtr, timestamp, duration);
     mhi.Fix();
 }
Beispiel #8
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="mat"></param>
 /// <param name="distType"></param>
 /// <param name="a"></param>
 /// <param name="b"></param>
 /// <param name="saturateRange"></param>
 public void Fill(InputOutputArray mat, DistributionType distType, InputArray a, InputArray b, bool saturateRange = false)
 {
     if (mat == null)
     {
         throw new ArgumentNullException("mat");
     }
     if (a == null)
     {
         throw new ArgumentNullException("a");
     }
     if (b == null)
     {
         throw new ArgumentNullException("b");
     }
     mat.ThrowIfNotReady();
     a.ThrowIfDisposed();
     b.ThrowIfDisposed();
     NativeMethods.core_RNG_fill(State, mat.CvPtr, (int)distType, a.CvPtr, b.CvPtr, saturateRange ? 1 : 0);
     mat.Fix();
 }
        /// <summary>
        /// Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
        /// </summary>
        /// <param name="size">The size of the image, where lines1 and lines2 were found.</param>
        /// <param name="lines1">The first group of lines that needs to be drawn. It is visualized in blue color.</param>
        /// <param name="lines2">The second group of lines. They visualized in red color.</param>
        /// <param name="image">Optional image, where the lines will be drawn. 
        /// The image should be color(3-channel) in order for lines1 and lines2 to be drawn 
        /// in the above mentioned colors.</param>
        /// <returns></returns>
        public virtual int CompareSegments(
            Size size, InputArray lines1, InputArray lines2, InputOutputArray image = null)
        {
            if (lines1 == null) 
                throw new ArgumentNullException("lines1");
            if (lines2 == null)
                throw new ArgumentNullException("lines2");
            lines1.ThrowIfDisposed();
            lines2.ThrowIfDisposed();
            if (image != null)
                image.ThrowIfNotReady();

            var ret = NativeMethods.imgproc_LineSegmentDetector_compareSegments(
                ptr, size, lines1.CvPtr, lines2.CvPtr, Cv2.ToPtr(image));

            GC.KeepAlive(lines1);
            GC.KeepAlive(lines2);
            if (image != null)
                image.Fix();

            return ret;
        }
Beispiel #10
0
 /// <summary>
 /// extends the symmetrical matrix from the lower half or from the upper half
 /// </summary>
 /// <param name="mtx"> Input-output floating-point square matrix</param>
 /// <param name="lowerToUpper">If true, the lower half is copied to the upper half, 
 /// otherwise the upper half is copied to the lower half</param>
 public static void CompleteSymm(InputOutputArray mtx, bool lowerToUpper = false)
 {
     if (mtx == null)
         throw new ArgumentNullException("mtx");
     mtx.ThrowIfNotReady();
     NativeMethods.core_completeSymm(mtx.CvPtr, lowerToUpper ? 1 : 0);
     mtx.Fix();
 }
Beispiel #11
0
 /// <summary>
 /// Computes a Hanning window coefficients in two dimensions.
 /// </summary>
 /// <param name="dst">Destination array to place Hann coefficients in</param>
 /// <param name="winSize">The window size specifications</param>
 /// <param name="type">Created array type</param>
 public static void CreateHanningWindow(InputOutputArray dst, Size winSize, MatType type)
 {
     if (dst == null)
         throw new ArgumentNullException(nameof(dst));
     dst.ThrowIfNotReady();
     NativeMethods.imgproc_createHanningWindow(dst.CvPtr, winSize, type);
     dst.Fix();
 }
Beispiel #12
0
        /// <summary>
        /// Draws a arrow segment pointing from the first point to the second one.
        /// The function arrowedLine draws an arrow between pt1 and pt2 points in the image. 
        /// See also cv::line.
        /// </summary>
        /// <param name="img">Image.</param>
        /// <param name="pt1">The point the arrow starts from.</param>
        /// <param name="pt2">The point the arrow points to.</param>
        /// <param name="color">Line color.</param>
        /// <param name="thickness">Line thickness.</param>
        /// <param name="lineType">Type of the line, see cv::LineTypes</param>
        /// <param name="shift">Number of fractional bits in the point coordinates.</param>
        /// <param name="tipLength">The length of the arrow tip in relation to the arrow length</param>
        public static void ArrowedLine(
            InputOutputArray img, 
            Point pt1, Point pt2, 
            Scalar color,
            int thickness = 1, 
            LineTypes lineType = LineTypes.Link8,
            int shift = 0, 
            double tipLength = 0.1)
        {
            if (img == null)
                throw new ArgumentNullException(nameof(img));
            img.ThrowIfNotReady();

            NativeMethods.imgproc_arrowedLine(
                img.CvPtr, pt1, pt2, color, thickness, (int)lineType, shift, tipLength);

            img.Fix();
        }
Beispiel #13
0
 /// <summary>
 /// fills array with normally-distributed random numbers with the specified mean and the standard deviation
 /// </summary>
 /// <param name="dst">The output array of random numbers. 
 /// The array must be pre-allocated and have 1 to 4 channels</param>
 /// <param name="mean">The mean value (expectation) of the generated random numbers</param>
 /// <param name="stddev">The standard deviation of the generated random numbers</param>
 public static void Randn(InputOutputArray dst, Scalar mean, Scalar stddev)
 {
     if (dst == null)
         throw new ArgumentNullException("dst");
     dst.ThrowIfNotReady();
     NativeMethods.core_randn_Scalar(dst.CvPtr, mean, stddev);
     dst.Fix();
 }
Beispiel #14
0
 /// <summary>
 /// scales and shifts array elements so that either the specified norm (alpha) 
 /// or the minimum (alpha) and maximum (beta) array values get the specified values
 /// </summary>
 /// <param name="src">The source array</param>
 /// <param name="dst">The destination array; will have the same size as src</param>
 /// <param name="alpha">The norm value to normalize to or the lower range boundary 
 /// in the case of range normalization</param>
 /// <param name="beta">The upper range boundary in the case of range normalization; 
 /// not used for norm normalization</param>
 /// <param name="normType">The normalization type</param>
 /// <param name="dtype">When the parameter is negative, 
 /// the destination array will have the same type as src, 
 /// otherwise it will have the same number of channels as src and the depth =CV_MAT_DEPTH(rtype)</param>
 /// <param name="mask">The optional operation mask</param>
 public static void Normalize( InputArray src, InputOutputArray dst, double alpha=1, double beta=0,
                      NormTypes normType=NormTypes.L2, int dtype=-1, InputArray mask=null)
 {
     if (src == null)
         throw new ArgumentNullException("src");
     if (dst == null)
         throw new ArgumentNullException("dst");
     src.ThrowIfDisposed();
     dst.ThrowIfNotReady();
     NativeMethods.core_normalize(src.CvPtr, dst.CvPtr, alpha, beta, (int)normType, dtype, ToPtr(mask));
     GC.KeepAlive(src);
     dst.Fix();
 }
Beispiel #15
0
 /// <summary>
 /// 
 /// </summary>
 /// <param name="data"></param>
 /// <param name="mean"></param>
 /// <param name="eigenvectors"></param>
 /// <param name="retainedVariance"></param>
 public static void PCAComputeVar(InputArray data, InputOutputArray mean,
     OutputArray eigenvectors, double retainedVariance)
 {
     if (data == null)
         throw new ArgumentNullException("data");
     if (mean == null)
         throw new ArgumentNullException("mean");
     if (eigenvectors == null)
         throw new ArgumentNullException("eigenvectors");
     data.ThrowIfDisposed();
     mean.ThrowIfNotReady();
     eigenvectors.ThrowIfNotReady();
     NativeMethods.core_PCAComputeVar(data.CvPtr, mean.CvPtr, eigenvectors.CvPtr, retainedVariance);
     GC.KeepAlive(data); 
     mean.Fix();
     eigenvectors.Fix();
 }
Beispiel #16
0
 /// <summary>
 /// fills array with uniformly-distributed random numbers from the range [low, high)
 /// </summary>
 /// <param name="dst">The output array of random numbers. 
 /// The array must be pre-allocated and have 1 to 4 channels</param>
 /// <param name="low">The inclusive lower boundary of the generated random numbers</param>
 /// <param name="high">The exclusive upper boundary of the generated random numbers</param>
 public static void Randu(InputOutputArray dst, Scalar low, Scalar high)
 {
     if (dst == null)
         throw new ArgumentNullException("dst");
     dst.ThrowIfNotReady();
     NativeMethods.core_randu_Scalar(dst.CvPtr, low, high);
     GC.KeepAlive(low);
     GC.KeepAlive(high); 
     dst.Fix();
 }
Beispiel #17
0
        /// <summary>
        /// Computes a dense optical flow using the Gunnar Farneback's algorithm.
        /// </summary>
        /// <param name="prev">first 8-bit single-channel input image.</param>
        /// <param name="next">second input image of the same size and the same type as prev.</param>
        /// <param name="flow">computed flow image that has the same size as prev and type CV_32FC2.</param>
        /// <param name="pyrScale">parameter, specifying the image scale (&lt;1) to build pyramids for each image; 
        /// pyrScale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous one.</param>
        /// <param name="levels">number of pyramid layers including the initial image; 
        /// levels=1 means that no extra layers are created and only the original images are used.</param>
        /// <param name="winsize">averaging window size; larger values increase the algorithm robustness to 
        /// image noise and give more chances for fast motion detection, but yield more blurred motion field.</param>
        /// <param name="iterations">number of iterations the algorithm does at each pyramid level.</param>
        /// <param name="polyN">size of the pixel neighborhood used to find polynomial expansion in each pixel; 
        /// larger values mean that the image will be approximated with smoother surfaces, 
        /// yielding more robust algorithm and more blurred motion field, typically poly_n =5 or 7.</param>
        /// <param name="polySigma">standard deviation of the Gaussian that is used to smooth derivatives used as 
        /// a basis for the polynomial expansion; for polyN=5, you can set polySigma=1.1, 
        /// for polyN=7, a good value would be polySigma=1.5.</param>
        /// <param name="flags">operation flags that can be a combination of OPTFLOW_USE_INITIAL_FLOW and/or OPTFLOW_FARNEBACK_GAUSSIAN</param>
        public static void CalcOpticalFlowFarneback(InputArray prev, InputArray next,
            InputOutputArray flow, double pyrScale, int levels, int winsize,
            int iterations, int polyN, double polySigma, OpticalFlowFlags flags)
        {
            if (prev == null)
                throw new ArgumentNullException("prev");
            if (next == null)
                throw new ArgumentNullException("next");
            if (flow == null)
                throw new ArgumentNullException("flow");
            prev.ThrowIfDisposed();
            next.ThrowIfDisposed();
            flow.ThrowIfNotReady();

            NativeMethods.video_calcOpticalFlowFarneback(prev.CvPtr, next.CvPtr, 
                flow.CvPtr, pyrScale, levels, winsize, iterations, polyN, polySigma, 
                (int)flags);

            flow.Fix();
        }
Beispiel #18
0
        /// <summary>
        /// 2値画像中の輪郭を検出します.
        /// </summary>
        /// <param name="image">入力画像,8ビット,シングルチャンネル.0以外のピクセルは 1として,0のピクセルは0のまま扱われます.
        /// また,この関数は,輪郭抽出処理中に入力画像 image の中身を書き換えます.</param>
        /// <param name="contours">検出された輪郭.各輪郭は,点のベクトルとして格納されます.</param>
        /// <param name="hierarchy">画像のトポロジーに関する情報を含む出力ベクトル.これは,輪郭数と同じ数の要素を持ちます.各輪郭 contours[i] に対して,
        /// 要素 hierarchy[i]のメンバにはそれぞれ,同じ階層レベルに存在する前後の輪郭,最初の子輪郭,および親輪郭の 
        /// contours インデックス(0 基準)がセットされます.また,輪郭 i において,前後,親,子の輪郭が存在しない場合,
        /// それに対応する hierarchy[i] の要素は,負の値になります.</param>
        /// <param name="mode">輪郭抽出モード</param>
        /// <param name="method">輪郭の近似手法</param>
        /// <param name="offset">オプションのオフセット.各輪郭点はこの値の分だけシフトします.これは,ROIの中で抽出された輪郭を,画像全体に対して位置づけて解析する場合に役立ちます.</param>
#else
        /// <summary>
        /// Finds contours in a binary image.
        /// </summary>
        /// <param name="image">Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. 
        /// Zero pixels remain 0’s, so the image is treated as binary.
        /// The function modifies the image while extracting the contours.</param> 
        /// <param name="contours">Detected contours. Each contour is stored as a vector of points.</param>
        /// <param name="hierarchy">Optional output vector, containing information about the image topology. 
        /// It has as many elements as the number of contours. For each i-th contour contours[i], 
        /// the members of the elements hierarchy[i] are set to 0-based indices in contours of the next 
        /// and previous contours at the same hierarchical level, the first child contour and the parent contour, respectively. 
        /// If for the contour i there are no next, previous, parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.</param>
        /// <param name="mode">Contour retrieval mode</param>
        /// <param name="method">Contour approximation method</param>
        /// <param name="offset"> Optional offset by which every contour point is shifted. 
        /// This is useful if the contours are extracted from the image ROI and then they should be analyzed in the whole image context.</param>
#endif
        public static void FindContours(InputOutputArray image, out Point[][] contours,
            out HierarchyIndex[] hierarchy, RetrievalModes mode, ContourApproximationModes method, Point? offset = null)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            image.ThrowIfNotReady();

            Point offset0 = offset.GetValueOrDefault(new Point());
            IntPtr contoursPtr, hierarchyPtr;
            NativeMethods.imgproc_findContours1_vector(image.CvPtr, out contoursPtr, out hierarchyPtr, (int)mode, (int)method, offset0);

            using (var contoursVec = new VectorOfVectorPoint(contoursPtr))
            using (var hierarchyVec = new VectorOfVec4i(hierarchyPtr))
            {
                contours = contoursVec.ToArray();
                Vec4i[] hierarchyOrg = hierarchyVec.ToArray();
                hierarchy = EnumerableEx.SelectToArray(hierarchyOrg, HierarchyIndex.FromVec4i);
            }
            image.Fix();
        }
Beispiel #19
0
        /// <summary>
        /// 2値画像中の輪郭を検出します.
        /// </summary>
        /// <param name="image">入力画像,8ビット,シングルチャンネル.0以外のピクセルは 1として,0のピクセルは0のまま扱われます.
        /// また,この関数は,輪郭抽出処理中に入力画像 image の中身を書き換えます.</param>
        /// <param name="contours">検出された輪郭.各輪郭は,点のベクトルとして格納されます.</param>
        /// <param name="hierarchy">画像のトポロジーに関する情報を含む出力ベクトル.これは,輪郭数と同じ数の要素を持ちます.各輪郭 contours[i] に対して,
        /// 要素 hierarchy[i]のメンバにはそれぞれ,同じ階層レベルに存在する前後の輪郭,最初の子輪郭,および親輪郭の 
        /// contours インデックス(0 基準)がセットされます.また,輪郭 i において,前後,親,子の輪郭が存在しない場合,
        /// それに対応する hierarchy[i] の要素は,負の値になります.</param>
        /// <param name="mode">輪郭抽出モード</param>
        /// <param name="method">輪郭の近似手法</param>
        /// <param name="offset">オプションのオフセット.各輪郭点はこの値の分だけシフトします.これは,ROIの中で抽出された輪郭を,画像全体に対して位置づけて解析する場合に役立ちます.</param>
#else
        /// <summary>
        /// Finds contours in a binary image.
        /// </summary>
        /// <param name="image">Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. 
        /// Zero pixels remain 0’s, so the image is treated as binary.
        /// The function modifies the image while extracting the contours.</param> 
        /// <param name="contours">Detected contours. Each contour is stored as a vector of points.</param>
        /// <param name="hierarchy">Optional output vector, containing information about the image topology. 
        /// It has as many elements as the number of contours. For each i-th contour contours[i], 
        /// the members of the elements hierarchy[i] are set to 0-based indices in contours of the next 
        /// and previous contours at the same hierarchical level, the first child contour and the parent contour, respectively. 
        /// If for the contour i there are no next, previous, parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.</param>
        /// <param name="mode">Contour retrieval mode</param>
        /// <param name="method">Contour approximation method</param>
        /// <param name="offset"> Optional offset by which every contour point is shifted. 
        /// This is useful if the contours are extracted from the image ROI and then they should be analyzed in the whole image context.</param>
#endif
        public static void FindContours(InputOutputArray image, out Mat[] contours,
            OutputArray hierarchy, RetrievalModes mode, ContourApproximationModes method, Point? offset = null)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            if (hierarchy == null)
                throw new ArgumentNullException(nameof(hierarchy));
            image.ThrowIfNotReady();
            hierarchy.ThrowIfNotReady();

            Point offset0 = offset.GetValueOrDefault(new Point());
            IntPtr contoursPtr;
            NativeMethods.imgproc_findContours1_OutputArray(image.CvPtr, out contoursPtr, hierarchy.CvPtr, (int)mode, (int)method, offset0);

            using (var contoursVec = new VectorOfMat(contoursPtr))
            {
                contours = contoursVec.ToArray();
            }
            image.Fix();
            hierarchy.Fix();
        }
Beispiel #20
0
        /// <summary>
        /// computes sparse optical flow using multi-scale Lucas-Kanade algorithm
        /// </summary>
        /// <param name="prevImg"></param>
        /// <param name="nextImg"></param>
        /// <param name="prevPts"></param>
        /// <param name="nextPts"></param>
        /// <param name="status"></param>
        /// <param name="err"></param>
        /// <param name="winSize"></param>
        /// <param name="maxLevel"></param>
        /// <param name="criteria"></param>
        /// <param name="flags"></param>
        /// <param name="minEigThreshold"></param>
        public static void CalcOpticalFlowPyrLK(
            InputArray prevImg, InputArray nextImg,
            InputArray prevPts, InputOutputArray nextPts,
            OutputArray status, OutputArray err,
            Size? winSize = null,
            int maxLevel = 3,
            TermCriteria? criteria = null,
            OpticalFlowFlags flags = OpticalFlowFlags.None,
            double minEigThreshold = 1e-4)
        {
            if (prevImg == null)
                throw new ArgumentNullException("prevImg");
            if (nextImg == null)
                throw new ArgumentNullException("nextImg");
            if (prevPts == null)
                throw new ArgumentNullException("prevPts");
            if (nextPts == null)
                throw new ArgumentNullException("nextPts");
            if (status == null)
                throw new ArgumentNullException("status");
            if (err == null)
                throw new ArgumentNullException("err");
            prevImg.ThrowIfDisposed();
            nextImg.ThrowIfDisposed();
            prevPts.ThrowIfDisposed();
            nextPts.ThrowIfNotReady();
            status.ThrowIfNotReady();
            err.ThrowIfNotReady();

            Size winSize0 = winSize.GetValueOrDefault(new Size(21, 21));
            TermCriteria criteria0 = criteria.GetValueOrDefault(
                TermCriteria.Both(30, 0.01));

            NativeMethods.video_calcOpticalFlowPyrLK_InputArray(
                prevImg.CvPtr, nextImg.CvPtr, prevPts.CvPtr, nextPts.CvPtr,
                status.CvPtr, err.CvPtr, winSize0,maxLevel,
                criteria0, (int)flags, minEigThreshold);

            nextPts.Fix();
            status.Fix();
            err.Fix();
        }
Beispiel #21
0
        /// <summary>
        /// 輪郭線,または内側が塗りつぶされた輪郭を描きます.
        /// </summary>
        /// <param name="image">出力画像</param>
        /// <param name="contours"> 入力される全輪郭.各輪郭は,点のベクトルとして格納されています.</param>
        /// <param name="contourIdx">描かれる輪郭を示します.これが負値の場合,すべての輪郭が描画されます.</param>
        /// <param name="color">輪郭の色.</param>
        /// <param name="thickness">輪郭線の太さ.これが負値の場合(例えば thickness=CV_FILLED ),輪郭の内側が塗りつぶされます.</param>
        /// <param name="lineType">線の連結性</param>
        /// <param name="hierarchy">階層に関するオプションの情報.これは,特定の輪郭だけを描画したい場合にのみ必要になります.</param>
        /// <param name="maxLevel">描画される輪郭の最大レベル.0ならば,指定された輪郭のみが描画されます.
        /// 1ならば,指定された輪郭と,それに入れ子になったすべての輪郭が描画されます.2ならば,指定された輪郭と,
        /// それに入れ子になったすべての輪郭,さらにそれに入れ子になったすべての輪郭が描画されます.このパラメータは, 
        /// hierarchy が有効な場合のみ考慮されます.</param>
        /// <param name="offset">輪郭をシフトするオプションパラメータ.指定された offset = (dx,dy) だけ,すべての描画輪郭がシフトされます.</param>
#else
        /// <summary>
        /// draws contours in the image
        /// </summary>
        /// <param name="image">Destination image.</param>
        /// <param name="contours">All the input contours. Each contour is stored as a point vector.</param>
        /// <param name="contourIdx">Parameter indicating a contour to draw. If it is negative, all the contours are drawn.</param>
        /// <param name="color">Color of the contours.</param>
        /// <param name="thickness">Thickness of lines the contours are drawn with. If it is negative (for example, thickness=CV_FILLED ), 
        /// the contour interiors are drawn.</param>
        /// <param name="lineType">Line connectivity. </param>
        /// <param name="hierarchy">Optional information about hierarchy. It is only needed if you want to draw only some of the contours</param>
        /// <param name="maxLevel">Maximal level for drawn contours. If it is 0, only the specified contour is drawn. 
        /// If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, 
        /// all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account 
        /// when there is hierarchy available.</param>
        /// <param name="offset">Optional contour shift parameter. Shift all the drawn contours by the specified offset = (dx, dy)</param>
#endif
        public static void DrawContours(
            InputOutputArray image,
            IEnumerable<Mat> contours,
            int contourIdx,
            Scalar color,
            int thickness = 1,
            LineTypes lineType = LineTypes.Link8,
            Mat hierarchy = null,
            int maxLevel = Int32.MaxValue,
            Point? offset = null)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            if (contours == null)
                throw new ArgumentNullException(nameof(contours));
            image.ThrowIfNotReady();

            Point offset0 = offset.GetValueOrDefault(new Point());
            IntPtr[] contoursPtr = EnumerableEx.SelectPtrs(contours);
            NativeMethods.imgproc_drawContours_InputArray(image.CvPtr, contoursPtr, contoursPtr.Length,
                        contourIdx, color, thickness, (int)lineType, ToPtr(hierarchy), maxLevel, offset0);
            image.Fix();
        }
Beispiel #22
0
        /// <summary>
        /// 輪郭線,または内側が塗りつぶされた輪郭を描きます.
        /// </summary>
        /// <param name="image">出力画像</param>
        /// <param name="contours"> 入力される全輪郭.各輪郭は,点のベクトルとして格納されています.</param>
        /// <param name="contourIdx">描かれる輪郭を示します.これが負値の場合,すべての輪郭が描画されます.</param>
        /// <param name="color">輪郭の色.</param>
        /// <param name="thickness">輪郭線の太さ.これが負値の場合(例えば thickness=CV_FILLED ),輪郭の内側が塗りつぶされます.</param>
        /// <param name="lineType">線の連結性</param>
        /// <param name="hierarchy">階層に関するオプションの情報.これは,特定の輪郭だけを描画したい場合にのみ必要になります.</param>
        /// <param name="maxLevel">描画される輪郭の最大レベル.0ならば,指定された輪郭のみが描画されます.
        /// 1ならば,指定された輪郭と,それに入れ子になったすべての輪郭が描画されます.2ならば,指定された輪郭と,
        /// それに入れ子になったすべての輪郭,さらにそれに入れ子になったすべての輪郭が描画されます.このパラメータは, 
        /// hierarchy が有効な場合のみ考慮されます.</param>
        /// <param name="offset">輪郭をシフトするオプションパラメータ.指定された offset = (dx,dy) だけ,すべての描画輪郭がシフトされます.</param>
#else
        /// <summary>
        /// draws contours in the image
        /// </summary>
        /// <param name="image">Destination image.</param>
        /// <param name="contours">All the input contours. Each contour is stored as a point vector.</param>
        /// <param name="contourIdx">Parameter indicating a contour to draw. If it is negative, all the contours are drawn.</param>
        /// <param name="color">Color of the contours.</param>
        /// <param name="thickness">Thickness of lines the contours are drawn with. If it is negative (for example, thickness=CV_FILLED ), 
        /// the contour interiors are drawn.</param>
        /// <param name="lineType">Line connectivity. </param>
        /// <param name="hierarchy">Optional information about hierarchy. It is only needed if you want to draw only some of the contours</param>
        /// <param name="maxLevel">Maximal level for drawn contours. If it is 0, only the specified contour is drawn. 
        /// If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, 
        /// all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account 
        /// when there is hierarchy available.</param>
        /// <param name="offset">Optional contour shift parameter. Shift all the drawn contours by the specified offset = (dx, dy)</param>
#endif
        public static void DrawContours(
            InputOutputArray image,
            IEnumerable<IEnumerable<Point>> contours,
            int contourIdx,
            Scalar color,
            int thickness = 1,
            LineTypes lineType = LineTypes.Link8,
            IEnumerable<HierarchyIndex> hierarchy = null,
            int maxLevel = Int32.MaxValue,
            Point? offset = null)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            if (contours == null)
                throw new ArgumentNullException(nameof(contours));
            image.ThrowIfNotReady();

            Point offset0 = offset.GetValueOrDefault(new Point());
            Point[][] contoursArray = EnumerableEx.SelectToArray(contours, EnumerableEx.ToArray);
            int[] contourSize2 = EnumerableEx.SelectToArray(contoursArray, pts => pts.Length);
            using (var contoursPtr = new ArrayAddress2<Point>(contoursArray))
            {
                if (hierarchy == null)
                {
                    NativeMethods.imgproc_drawContours_vector(image.CvPtr, contoursPtr.Pointer, contoursArray.Length, contourSize2,
                        contourIdx, color, thickness, (int)lineType, IntPtr.Zero, 0, maxLevel, offset0);
                }
                else
                {
                    Vec4i[] hiearchyVecs = EnumerableEx.SelectToArray(hierarchy, hi => hi.ToVec4i());
                    NativeMethods.imgproc_drawContours_vector(image.CvPtr, contoursPtr.Pointer, contoursArray.Length, contourSize2,
                        contourIdx, color, thickness, (int)lineType, hiearchyVecs, hiearchyVecs.Length, maxLevel, offset0);
                }
            }

            image.Fix();
        }
Beispiel #23
0
        /// <summary>
        /// 枠だけの楕円,楕円弧,もしくは塗りつぶされた扇形の楕円を描画する
        /// </summary>
        /// <param name="img">楕円が描画される画像</param>
        /// <param name="center">楕円の中心</param>
        /// <param name="axes">楕円の軸の長さ</param>
        /// <param name="angle">回転角度</param>
        /// <param name="startAngle">楕円弧の開始角度</param>
        /// <param name="endAngle">楕円弧の終了角度</param>
        /// <param name="color">楕円の色</param>
        /// <param name="thickness">楕円弧の線の幅 [既定値は1]</param>
        /// <param name="lineType">楕円弧の線の種類 [既定値はLineType.Link8]</param>
        /// <param name="shift">中心座標と軸の長さの小数点以下の桁を表すビット数 [既定値は0]</param>
#else
        /// <summary>
        /// Draws simple or thick elliptic arc or fills ellipse sector
        /// </summary>
        /// <param name="img">Image. </param>
        /// <param name="center">Center of the ellipse. </param>
        /// <param name="axes">Length of the ellipse axes. </param>
        /// <param name="angle">Rotation angle. </param>
        /// <param name="startAngle">Starting angle of the elliptic arc. </param>
        /// <param name="endAngle">Ending angle of the elliptic arc. </param>
        /// <param name="color">Ellipse color. </param>
        /// <param name="thickness">Thickness of the ellipse arc. [By default this is 1]</param>
        /// <param name="lineType">Type of the ellipse boundary. [By default this is LineType.Link8]</param>
        /// <param name="shift">Number of fractional bits in the center coordinates and axes' values. [By default this is 0]</param>
#endif
        public static void Ellipse(
            InputOutputArray img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color,
            int thickness = 1, LineTypes lineType = LineTypes.Link8, int shift = 0)
        {
            if (img == null)
                throw new ArgumentNullException(nameof(img));
            img.ThrowIfNotReady();
            NativeMethods.imgproc_ellipse1(img.CvPtr, center, axes, angle, startAngle, endAngle, color, thickness, (int)lineType, shift);
            img.Fix();
        }
Beispiel #24
0
 /// <summary>
 /// initializes scaled identity matrix
 /// </summary>
 /// <param name="mtx">The matrix to initialize (not necessarily square)</param>
 /// <param name="s">The value to assign to the diagonal elements</param>
 public static void SetIdentity(InputOutputArray mtx, Scalar? s = null)
 {
     if (mtx == null)
         throw new ArgumentNullException("mtx");
     mtx.ThrowIfNotReady();
     Scalar s0 = s.GetValueOrDefault(new Scalar(1));
     NativeMethods.core_setIdentity(mtx.CvPtr, s0);
     mtx.Fix();
 }
Beispiel #25
0
 /// <summary>
 /// Fills a connected component with the given color.
 /// </summary>
 /// <param name="image">Input/output 1- or 3-channel, 8-bit, or floating-point image. 
 /// It is modified by the function unless the FLOODFILL_MASK_ONLY flag is set in the 
 /// second variant of the function. See the details below.</param>
 /// <param name="mask">(For the second function only) Operation mask that should be a single-channel 8-bit image, 
 /// 2 pixels wider and 2 pixels taller. The function uses and updates the mask, so you take responsibility of 
 /// initializing the mask content. Flood-filling cannot go across non-zero pixels in the mask. For example, 
 /// an edge detector output can be used as a mask to stop filling at edges. It is possible to use the same mask 
 /// in multiple calls to the function to make sure the filled area does not overlap.</param>
 /// <param name="seedPoint">Starting point.</param>
 /// <param name="newVal">New value of the repainted domain pixels.</param>
 /// <param name="rect">Optional output parameter set by the function to the 
 /// minimum bounding rectangle of the repainted domain.</param>
 /// <param name="loDiff">Maximal lower brightness/color difference between the currently 
 /// observed pixel and one of its neighbors belonging to the component, or a seed pixel 
 /// being added to the component.</param>
 /// <param name="upDiff">Maximal upper brightness/color difference between the currently 
 /// observed pixel and one of its neighbors belonging to the component, or a seed pixel 
 /// being added to the component.</param>
 /// <param name="flags">Operation flags. Lower bits contain a connectivity value, 
 /// 4 (default) or 8, used within the function. Connectivity determines which 
 /// neighbors of a pixel are considered. </param>
 /// <returns></returns>
 public static int FloodFill(InputOutputArray image, InputOutputArray mask,
                             Point seedPoint, Scalar newVal, out Rect rect,
                             Scalar? loDiff = null, Scalar? upDiff = null,
                             FloodFillFlags flags = FloodFillFlags.Link4)
 {
     if (image == null)
         throw new ArgumentNullException(nameof(image));
     if (mask == null)
         throw new ArgumentNullException(nameof(mask));
     image.ThrowIfNotReady();
     mask.ThrowIfNotReady();
     Scalar loDiff0 = loDiff.GetValueOrDefault(new Scalar());
     Scalar upDiff0 = upDiff.GetValueOrDefault(new Scalar());
     int ret = NativeMethods.imgproc_floodFill(image.CvPtr, mask.CvPtr, seedPoint, 
         newVal, out rect, loDiff0, upDiff0, (int)flags);
     image.Fix();
     mask.Fix();
     return ret;
 }
Beispiel #26
0
 /// <summary>
 /// computes covariation matrix of a set of samples
 /// </summary>
 /// <param name="samples"></param>
 /// <param name="covar"></param>
 /// <param name="mean"></param>
 /// <param name="flags"></param>
 /// <param name="ctype"></param>
 public static void CalcCovarMatrix(InputArray samples, OutputArray covar,
     InputOutputArray mean, CovarFlags flags, MatType ctype)
 {
     if (samples == null)
         throw new ArgumentNullException("samples");
     if (covar == null)
         throw new ArgumentNullException("covar");
     if (mean == null)
         throw new ArgumentNullException("mean");
     samples.ThrowIfDisposed();
     covar.ThrowIfNotReady();
     mean.ThrowIfNotReady();
     NativeMethods.core_calcCovarMatrix_InputArray(samples.CvPtr, covar.CvPtr, mean.CvPtr, (int)flags, ctype);
     GC.KeepAlive(samples); 
     covar.Fix();
     mean.Fix();
 }
Beispiel #27
0
 /// <summary>
 /// Segments the image using GrabCut algorithm
 /// </summary>
 /// <param name="img">Input 8-bit 3-channel image.</param>
 /// <param name="mask">Input/output 8-bit single-channel mask. 
 /// The mask is initialized by the function when mode is set to GC_INIT_WITH_RECT. 
 /// Its elements may have Cv2.GC_BGD / Cv2.GC_FGD / Cv2.GC_PR_BGD / Cv2.GC_PR_FGD</param>
 /// <param name="rect">ROI containing a segmented object. The pixels outside of the ROI are 
 /// marked as "obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT.</param>
 /// <param name="bgdModel">Temporary array for the background model. Do not modify it while you are processing the same image.</param>
 /// <param name="fgdModel">Temporary arrays for the foreground model. Do not modify it while you are processing the same image.</param>
 /// <param name="iterCount">Number of iterations the algorithm should make before returning the result. 
 /// Note that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or mode==GC_EVAL .</param>
 /// <param name="mode">Operation mode that could be one of GrabCutFlag value.</param>
 public static void GrabCut(InputArray img, InputOutputArray mask, Rect rect,
                            InputOutputArray bgdModel, InputOutputArray fgdModel,
                            int iterCount, GrabCutModes mode)
 {
     if (img == null)
         throw new ArgumentNullException(nameof(img));
     if (mask == null)
         throw new ArgumentNullException(nameof(mask));
     if (bgdModel == null)
         throw new ArgumentNullException(nameof(bgdModel));
     if (fgdModel == null)
         throw new ArgumentNullException(nameof(fgdModel));
     img.ThrowIfDisposed();
     mask.ThrowIfNotReady();
     bgdModel.ThrowIfNotReady();
     fgdModel.ThrowIfNotReady();
     NativeMethods.imgproc_grabCut(img.CvPtr, mask.CvPtr, rect,
         bgdModel.CvPtr, fgdModel.CvPtr, iterCount, (int)mode);
     GC.KeepAlive(img);
     mask.Fix();
     bgdModel.Fix();
     fgdModel.Fix();
 }
Beispiel #28
0
 /// <summary>
 /// fills array with uniformly-distributed random numbers from the range [low, high)
 /// </summary>
 /// <param name="dst">The output array of random numbers. 
 /// The array must be pre-allocated and have 1 to 4 channels</param>
 /// <param name="low">The inclusive lower boundary of the generated random numbers</param>
 /// <param name="high">The exclusive upper boundary of the generated random numbers</param>
 public static void Randu(InputOutputArray dst, InputArray low, InputArray high)
 {
     if (dst == null)
         throw new ArgumentNullException("dst");
     if (low == null)
         throw new ArgumentNullException("low");
     if (high == null)
         throw new ArgumentNullException("high");
     dst.ThrowIfNotReady();
     low.ThrowIfDisposed();
     high.ThrowIfDisposed();
     NativeMethods.core_randu_InputArray(dst.CvPtr, low.CvPtr, high.CvPtr);
     GC.KeepAlive(low);
     GC.KeepAlive(high); 
     dst.Fix();
 }
        /// <summary>
        /// 
        /// </summary>
        /// <param name="frame0"></param>
        /// <param name="frame1"></param>
        /// <param name="flow"></param>
        public override void Calc(
            InputArray frame0, InputArray frame1, InputOutputArray flow)
        {
            if (disposed)
                throw new ObjectDisposedException("DenseOpticalFlowImpl");
            if (frame0 == null)
                throw new ArgumentNullException(nameof(frame0));
            if (frame1 == null)
                throw new ArgumentNullException(nameof(frame1));
            if (flow == null)
                throw new ArgumentNullException(nameof(flow));
            frame0.ThrowIfDisposed();
            frame1.ThrowIfDisposed();
            flow.ThrowIfNotReady();

            NativeMethods.video_DenseOpticalFlow_calc(
                ptr, frame0.CvPtr, frame1.CvPtr, flow.CvPtr);

            flow.Fix();
        }
Beispiel #30
0
 /// <summary>
 /// fills array with normally-distributed random numbers with the specified mean and the standard deviation
 /// </summary>
 /// <param name="dst">The output array of random numbers. 
 /// The array must be pre-allocated and have 1 to 4 channels</param>
 /// <param name="mean">The mean value (expectation) of the generated random numbers</param>
 /// <param name="stddev">The standard deviation of the generated random numbers</param>
 public static void Randn(InputOutputArray dst, InputArray mean, InputArray stddev)
 {
     if (dst == null)
         throw new ArgumentNullException("dst");
     if (mean == null)
         throw new ArgumentNullException("mean");
     if (stddev == null)
         throw new ArgumentNullException("stddev");
     dst.ThrowIfNotReady();
     mean.ThrowIfDisposed();
     stddev.ThrowIfDisposed();
     NativeMethods.core_randn_InputArray(dst.CvPtr, mean.CvPtr, stddev.CvPtr);
     GC.KeepAlive(mean);
     GC.KeepAlive(stddev); 
     dst.Fix();
 }
Beispiel #31
0
 /// <summary>
 /// 
 /// </summary>
 /// <param name="mat"></param>
 /// <param name="distType"></param>
 /// <param name="a"></param>
 /// <param name="b"></param>
 /// <param name="saturateRange"></param>
 public void Fill(InputOutputArray mat, DistributionType distType, InputArray a, InputArray b,
     bool saturateRange = false)
 {
     if (mat == null)
         throw new ArgumentNullException(nameof(mat));
     if (a == null)
         throw new ArgumentNullException(nameof(a));
     if (b == null)
         throw new ArgumentNullException(nameof(b));
     mat.ThrowIfNotReady();
     a.ThrowIfDisposed();
     b.ThrowIfDisposed();
     NativeMethods.core_RNG_fill(ref state, mat.CvPtr, (int) distType, a.CvPtr, b.CvPtr, saturateRange ? 1 : 0);
     mat.Fix();
 }
Beispiel #32
0
        /// <summary>
        /// shuffles the input array elements
        /// </summary>
        /// <param name="dst">The input/output numerical 1D array</param>
        /// <param name="iterFactor">The scale factor that determines the number of random swap operations.</param>
        /// <param name="rng">The optional random number generator used for shuffling. 
        /// If it is null, theRng() is used instead.</param>
        public static void RandShuffle(InputOutputArray dst, double iterFactor, RNG rng = null)
        {
            if (dst == null)
                throw new ArgumentNullException("dst");
            dst.ThrowIfNotReady();

            if (rng == null)
            {
                NativeMethods.core_randShuffle(dst.CvPtr, iterFactor, IntPtr.Zero);
            }
            else
            {
                ulong state = rng.State;
                NativeMethods.core_randShuffle(dst.CvPtr, iterFactor, ref state);
                rng.State = state;
            }
            dst.Fix();
        }
Beispiel #33
0
 /// <summary>
 /// Performs a marker-based image segmentation using the watershed algorithm.
 /// </summary>
 /// <param name="image">Input 8-bit 3-channel image.</param>
 /// <param name="markers">Input/output 32-bit single-channel image (map) of markers. 
 /// It should have the same size as image.</param>
 public static void Watershed(InputArray image, InputOutputArray markers)
 {
     if (image == null)
         throw new ArgumentNullException(nameof(image));
     if (markers == null)
         throw new ArgumentNullException(nameof(markers));
     image.ThrowIfDisposed();
     markers.ThrowIfNotReady();
     NativeMethods.imgproc_watershed(image.CvPtr, markers.CvPtr);
     GC.KeepAlive(image);
     markers.Fix();
 }
Beispiel #34
0
 /// <summary>
 /// inserts a single channel to dst (coi is 0-based index)
 /// </summary>
 /// <param name="src"></param>
 /// <param name="dst"></param>
 /// <param name="coi"></param>
 public static void InsertChannel(InputArray src, InputOutputArray dst, int coi)
 {
     if (src == null)
         throw new ArgumentNullException("src");
     if (dst == null)
         throw new ArgumentNullException("dst");
     src.ThrowIfDisposed();
     dst.ThrowIfNotReady();
     NativeMethods.core_insertChannel(src.CvPtr, dst.CvPtr, coi);
     GC.KeepAlive(src);
     dst.Fix();
 }
Beispiel #35
0
 /// <summary>
 /// converts NaN's to the given number
 /// </summary>
 /// <param name="a"></param>
 /// <param name="val"></param>
 public static void PatchNaNs(InputOutputArray a, double val = 0)
 {
     if (a == null)
         throw new ArgumentNullException("a");
     a.ThrowIfNotReady();
     NativeMethods.core_patchNaNs(a.CvPtr, val);
     GC.KeepAlive(a);
 }
        /// <summary>
        /// Draws the line segments on a given image.
        /// </summary>
        /// <param name="image">The image, where the liens will be drawn. 
        /// Should be bigger or equal to the image, where the lines were found.</param>
        /// <param name="lines">A vector of the lines that needed to be drawn.</param>
        public virtual void DrawSegments(InputOutputArray image, InputArray lines)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            if (lines == null)
                throw new ArgumentNullException(nameof(lines));
            image.ThrowIfNotReady();
            lines.ThrowIfDisposed();

            NativeMethods.imgproc_LineSegmentDetector_drawSegments(ptr, image.CvPtr, lines.CvPtr);

            image.Fix();
            GC.KeepAlive(lines);
        }
Beispiel #37
0
        /// <summary>
        /// 2値画像中の輪郭を検出します.
        /// </summary>
        /// <param name="image">入力画像,8ビット,シングルチャンネル.0以外のピクセルは 1として,0のピクセルは0のまま扱われます.
        /// また,この関数は,輪郭抽出処理中に入力画像 image の中身を書き換えます.</param>
        /// <param name="mode">輪郭抽出モード</param>
        /// <param name="method">輪郭の近似手法</param>
        /// <param name="offset">オプションのオフセット.各輪郭点はこの値の分だけシフトします.これは,ROIの中で抽出された輪郭を,画像全体に対して位置づけて解析する場合に役立ちます.</param>
        /// <return>検出された輪郭.各輪郭は,点のベクトルとして格納されます.</return>
#else
        /// <summary>
        /// Finds contours in a binary image.
        /// </summary>
        /// <param name="image">Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. 
        /// Zero pixels remain 0’s, so the image is treated as binary.
        /// The function modifies the image while extracting the contours.</param> 
        /// <param name="mode">Contour retrieval mode</param>
        /// <param name="method">Contour approximation method</param>
        /// <param name="offset"> Optional offset by which every contour point is shifted. 
        /// This is useful if the contours are extracted from the image ROI and then they should be analyzed in the whole image context.</param>
        /// <returns>Detected contours. Each contour is stored as a vector of points.</returns>
#endif
        public static MatOfPoint[] FindContoursAsMat(InputOutputArray image,
            RetrievalModes mode, ContourApproximationModes method, Point? offset = null)
        {
            if (image == null)
                throw new ArgumentNullException(nameof(image));
            image.ThrowIfNotReady();

            Point offset0 = offset.GetValueOrDefault(new Point());
            IntPtr contoursPtr;
            NativeMethods.imgproc_findContours2_OutputArray(image.CvPtr, out contoursPtr, (int)mode, (int)method, offset0);
            image.Fix();

            using (var contoursVec = new VectorOfMat(contoursPtr))
            {
                return contoursVec.ToArray<MatOfPoint>();
            }
        }