Beispiel #1
0
        /// <summary>
        /// Creates a new Spectrogram object instance and performs a STFT on the given audio
        /// </summary>
        /// <param name="wav">a Wav object</param>
        /// <param name="windowSize">is the size for the window in samples</param>
        /// <param name="fps">is the desired frame rate</param>
        /// <param name="online">work in online mode (i.e. use only past audio information)</param>
        /// <param name="phase">include phase information</param>
        public Spectrogram(Wav wav, MemoryAllocator allocator, int windowSize = 2048, int fps = 200, bool online = true, bool phase = true)
        {
            _allocator = allocator;
            //init some variables
            _wav = wav;
            _fps = fps;
            //derive some variables
            HopSize = _wav.Samplerate / (float)_fps; //use floats so that seeking works properly
            _frames = (int)(_wav.Samples / HopSize);
            _ffts   = windowSize / 2;
            Bins    = windowSize / 2; //initial number equal to ffts, can change if filters are used

            //init STFT matrix
            _STFT = _allocator.GetComplex32Matrix(_frames, _ffts);
            //_STFT = DenseMatrix.Create(_frames, _ffts, Complex32.Zero);

            //create windowing function
            var cArray = wav.Audio.ToRowArrays()[0];

            var values = MathNet.Numerics.Window.Hann(windowSize).Select(d => (float)d).ToArray();

            Window = _allocator.GetFloatVector(values.Length);
            Window.SetValues(values);

            //Window = Vector<float>.Build.DenseOfArray(MathNet.Numerics.Window.Hann(windowSize).Select(d => (float)d).ToArray());

            //step through all frames
            System.Numerics.Complex[] result = new System.Numerics.Complex[Window.Count];
            foreach (var frame in Enumerable.Range(0, _frames))
            {
                int            seek;
                Vector <float> signal;
                //seek to the right position in the audio signal
                if (online)
                {
                    //step back a complete windowSize after moving forward 1 hopSize
                    //so that the current position is at the stop of the window
                    seek = (int)((frame + 1) * HopSize - windowSize);
                }
                else
                {
                    //step back half of the windowSize so that the frame represents the centre of the window
                    seek = (int)(frame * HopSize - windowSize / 2);
                }
                //read in the right portion of the audio
                if (seek >= _wav.Samples)
                {
                    //stop of file reached
                    break;
                }
                else if (seek + windowSize > _wav.Samples)
                {
                    //stop behind the actual audio stop, append zeros accordingly
                    int zeroAmount = seek + windowSize - _wav.Samples;
                    //var zeros = Vector<float>.Build.Dense(zeroAmount, 0);

                    var t = PythonUtilities.Slice <float>(cArray, seek, cArray.Length).ToArray();

                    //t.AddRange(zeros.ToList());

                    signal = _allocator.GetFloatVector(t.Length + zeroAmount);
                    for (int i = 0; i < t.Length; i++)
                    {
                        signal[i] = t[i];
                    }
                    //signal.SetValues(t);
                    //signal = Vector<float>.Build.DenseOfEnumerable(t);
                }
                else if (seek < 0)
                {
                    //start before actual audio start, pad with zeros accordingly
                    int zeroAmount = -seek;
                    var zeros      = Vector <float> .Build.Dense(zeroAmount, 0).ToList();

                    var t = PythonUtilities.Slice <float>(cArray, 0, seek + windowSize).ToArray();
                    zeros.AddRange(t);

                    signal = _allocator.GetFloatVector(t.Length + zeroAmount);
                    signal.SetValues(zeros.ToArray());
                    //signal = Vector<float>.Build.DenseOfEnumerable(zeros);
                }
                else
                {
                    //normal read operation
                    var slice = PythonUtilities.Slice <float>(cArray, seek, seek + windowSize).ToArray();
                    signal = _allocator.GetFloatVector(slice.Length);
                    signal.SetValues(slice);

                    //signal = Vector<float>.Build.DenseOfEnumerable(PythonUtilities.Slice<float>(cArray, seek, seek + windowSize));
                }
                //multiply the signal with the window function
                signal = signal.PointwiseMultiply(Window);
                //only shift and perform complex DFT if needed
                if (phase)
                {
                    //circular shift the signal (needed for correct phase)
                    signal = NumpyCompatibility.FFTShift(signal);
                }
                //perform DFT
                //sanity check
                Debug.Assert(result.Length == signal.Count);
                for (int i = 0; i < result.Length; i++)
                {
                    result[i] = signal[i];
                }
                MathNet.Numerics.IntegralTransforms.Fourier.BluesteinForward(result, MathNet.Numerics.IntegralTransforms.FourierOptions.NoScaling);
                _STFT.SetRow(frame, result.Select(r => new Complex32((float)r.Real, (float)r.Imaginary)).Take(_ffts).ToArray());
                //var _newSTFTRow = result.Select(r => new Complex32((float)r.Real, (float)r.Imaginary)).Take(_ffts).ToArray();
                //_STFT.SetRow(frame, _newSTFTRow);
                //next frame
                _allocator.ReturnFloatVectorStorage((MathNet.Numerics.LinearAlgebra.Storage.DenseVectorStorage <float>)signal.Storage);
            }
            //magnitude spectrogram

            Spec = _allocator.GetFloatMatrix(_STFT.RowCount, _STFT.ColumnCount);
            if (phase)
            {
                Phase = _allocator.GetFloatMatrix(_STFT.RowCount, _STFT.ColumnCount);
            }
            for (int i = 0; i < Spec.RowCount; i++)
            {
                for (int j = 0; j < Spec.ColumnCount; j++)
                {
                    Spec.At(i, j, _STFT.At(i, j).Magnitude);
                    if (phase)
                    {
                        Phase.At(i, j, _STFT.At(i, j).Phase);
                    }
                }
            }
            //Spec = _STFT.Map(c => (float)c.Magnitude);

            //phase
            //if (phase)
            //{
            //    var imag = _STFT.Map(c => (float)c.Imaginary);
            //    var real = _STFT.Map(c => (float)c.Real);
            //    Phase = real.Map2((r, i) => (float)Math.Atan2(i,r), imag);
            //}
        }
Beispiel #2
0
        /// <summary>
        /// Calculates a triangular window of the given size.
        /// </summary>
        /// <param name="start">starting bin (with value 0, included in the returned filter)</param>
        /// <param name="mid">center bin (of height 1, unless norm is True)</param>
        /// <param name="stop">end bin (with value 0, not included in the returned filter)</param>
        /// <param name="equal">normalize the area of the filter to 1 [default=False]</param>
        /// <returns>a triangular shaped filter</returns>
        public static float[] Triang(int start, int mid, int stop, bool equal = false)
        {
            //height of the filter
            var height = 1.0f;

            //normalize the height
            if (equal)
            {
                height = 2f / (stop - start);
            }
            //init the filter
            float[] triang_filter = new float[stop - start];
            //rising edge
            PythonUtilities.SetArraySegment(PythonUtilities.Slice(triang_filter, 0, mid - start), NumpyCompatibility.LinSpace(0, height, (mid - start), false).ToArray());
            //falling edge
            PythonUtilities.SetArraySegment(PythonUtilities.Slice(triang_filter, mid - start, triang_filter.Length), NumpyCompatibility.LinSpace(height, 0, (stop - mid), false).ToArray());
            //return
            return(triang_filter);
        }