Inheritance: IDataset
Beispiel #1
0
        protected override void Train(IDataset ds)
        {
            bool use_junk = PGetb("junk") && !DisableJunk;
            int nsamples = ds.nSamples();
            if (PExists("%nsamples"))
                nsamples += PGeti("%nsamples");

            Global.Debugf("info", "Training content classifier");

            if (CharClass.IsEmpty)
            {
                Initialize(CreateClassesFromDataset(ds));
            }
            if (use_junk/*&& !JunkClass.IsEmpty*/)
            {
                Intarray nonjunk = new Intarray();
                for (int i = 0; i < ds.nSamples(); i++)
                    if (ds.Cls(i) != jc())
                        nonjunk.Push(i);
                Datasubset nonjunkds = new Datasubset(ds, nonjunk);
                CharClass.TrainDense(nonjunkds, PGeti("epochs"));
            }
            else
            {
                CharClass.TrainDense(ds, PGeti("epochs"));
            }

            if (use_junk /*&& !JunkClass.IsEmpty*/)
            {
                Global.Debugf("info", "Training junk classifier");
                Intarray isjunk = new Intarray();
                int njunk = 0;
                for (int i = 0; i < ds.nSamples(); i++)
                {
                    bool j = (ds.Cls(i) == jc());
                    isjunk.Push(JunkClass.Classes[Convert.ToInt32(j)]);
                    if (j) njunk++;
                }
                if (njunk > 0)
                {
                    MappedDataset junkds = new MappedDataset(ds, isjunk);
                    JunkClass.TrainDense(junkds, PGeti("epochs"));
                }
                else
                {
                    Global.Debugf("warn", "you are training a junk class but there are no samples to train on");
                    JunkClass.DeleteLenet();
                }
            }
            PSet("%nsamples", nsamples);
        }
Beispiel #2
0
        protected override void Train(IDataset ds)
        {
            bool use_junk = PGetb("junk") && !DisableJunk;

            if (charclass.IsEmpty)
            {
                charclass.SetComponent(ComponentCreator.MakeComponent(PGet("charclass")));
                TryAttachCharClassifierEvent(charclass.Object);
            }
            if (junkclass.IsEmpty)
            {
                junkclass.SetComponent(ComponentCreator.MakeComponent(PGet("junkclass")));
                TryAttachJunkClassifierEvent(junkclass.Object);
            }
            if (ulclass.IsEmpty)
                ulclass.SetComponent(ComponentCreator.MakeComponent(PGet("ulclass")));

            Global.Debugf("info", "Training content classifier");
            if (use_junk && !junkclass.IsEmpty)
            {
                Intarray nonjunk = new Intarray();
                for (int i = 0; i < ds.nSamples(); i++)
                    if (ds.Cls(i) != jc())
                        nonjunk.Push(i);
                Datasubset nonjunkds = new Datasubset(ds, nonjunk);
                charclass.Object.XTrain(nonjunkds);
            }
            else
            {
                charclass.Object.XTrain(ds);
            }

            if (use_junk && !junkclass.IsEmpty)
            {
                Global.Debugf("info", "Training junk classifier");
                Intarray isjunk = new Intarray();
                int njunk = 0;
                for (int i = 0; i < ds.nSamples(); i++)
                {
                    bool j = (ds.Cls(i) == jc());
                    isjunk.Push(Convert.ToInt32(j));
                    if (j) njunk++;
                }
                if (njunk > 0)
                {
                    MappedDataset junkds = new MappedDataset(ds, isjunk);
                    junkclass.Object.XTrain(junkds);
                }
                else
                {
                    Global.Debugf("warn", "you are training a junk class but there are no samples to train on");
                    junkclass.SetComponent(null);
                }

                if (PGeti("ul") > 0 && !ulclass.IsEmpty)
                {
                    throw new Exception("ulclass not implemented");
                }
            }
        }
Beispiel #3
0
 public override void TrainDense(IDataset ds)
 {
     //PSet("%nsamples", ds.nSamples());
     float split = PGetf("cv_split");
     int mlp_cv_max = PGeti("cv_max");
     if (crossvalidate)
     {
         // perform a split for cross-validation, making sure
         // that we don't have the same sample in both the
         // test and the training set (even if the data set
         // is the result of resampling)
         Intarray test_ids = new Intarray();
         Intarray ids = new Intarray();
         for (int i = 0; i < ds.nSamples(); i++)
             ids.Push(ds.Id(i));
         NarrayUtil.Uniq(ids);
         Global.Debugf("cvdetail", "reduced {0} ids to {1} ids", ds.nSamples(), ids.Length());
         NarrayUtil.Shuffle(ids);
         int nids = (int)((1.0 - split) * ids.Length());
         nids = Math.Min(nids, mlp_cv_max);
         for (int i = 0; i < nids; i++)
             test_ids.Push(ids[i]);
         NarrayUtil.Quicksort(test_ids);
         Intarray training = new Intarray();
         Intarray testing = new Intarray();
         for (int i = 0; i < ds.nSamples(); i++)
         {
             int id = ds.Id(i);
             if (ClassifierUtil.Bincontains(test_ids, id))
                 testing.Push(i);
             else
                 training.Push(i);
         }
         Global.Debugf("cvdetail", "#training {0} #testing {1}",
                training.Length(), testing.Length());
         PSet("%ntraining", training.Length());
         PSet("%ntesting", testing.Length());
         Datasubset trs = new Datasubset(ds, training);
         Datasubset tss = new Datasubset(ds, testing);
         TrainBatch(trs, tss);
     }
     else
     {
         TrainBatch(ds, ds);
     }
 }